{"title":"在空间域和傅立叶域自动检测和评估超高性能混凝土的裂缝发展情况","authors":"Jixing Cao, Yao Zhang, Haijie He, Weibing Peng, Weigang Zhao, Zhiguo Yan, Hehua Zhu","doi":"10.1007/s11709-024-1042-x","DOIUrl":null,"url":null,"abstract":"<p>Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete (UHPC). This study detects crack evolution using a novel dynamic mode decomposition (DMD) method. In this method, the sparse matrix ‘determined’ from images is used to reconstruct the foreground that contains cracks, and the global threshold method is adopted to extract the crack patterns. The application of the DMD method to the three-point bending test demonstrates the efficiency in inspecting cracks with high accuracy. Accordingly, the geometric features, including the area and its projection in two major directions, are evaluated over time. The relationship between the geometric properties of cracks and load-displacement curves of UHPC is discussed. Due to the irregular shape of cracks in the spatial domain, the cracks are then transformed into the Fourier domain to assess their development. Results indicate that crack patterns in the Fourier domain exhibit a distinct concentration around a central position. Moreover, the power spectral density of cracks exhibits an increasing trend over time. The investigation into crack evolution in both the spatial and Fourier domains contributes significantly to elucidating the mechanical behavior of UHPC.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic detection and assessment of crack development in ultra-high performance concrete in the spatial and Fourier domains\",\"authors\":\"Jixing Cao, Yao Zhang, Haijie He, Weibing Peng, Weigang Zhao, Zhiguo Yan, Hehua Zhu\",\"doi\":\"10.1007/s11709-024-1042-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete (UHPC). This study detects crack evolution using a novel dynamic mode decomposition (DMD) method. In this method, the sparse matrix ‘determined’ from images is used to reconstruct the foreground that contains cracks, and the global threshold method is adopted to extract the crack patterns. The application of the DMD method to the three-point bending test demonstrates the efficiency in inspecting cracks with high accuracy. Accordingly, the geometric features, including the area and its projection in two major directions, are evaluated over time. The relationship between the geometric properties of cracks and load-displacement curves of UHPC is discussed. Due to the irregular shape of cracks in the spatial domain, the cracks are then transformed into the Fourier domain to assess their development. Results indicate that crack patterns in the Fourier domain exhibit a distinct concentration around a central position. Moreover, the power spectral density of cracks exhibits an increasing trend over time. The investigation into crack evolution in both the spatial and Fourier domains contributes significantly to elucidating the mechanical behavior of UHPC.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1042-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1042-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Automatic detection and assessment of crack development in ultra-high performance concrete in the spatial and Fourier domains
Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete (UHPC). This study detects crack evolution using a novel dynamic mode decomposition (DMD) method. In this method, the sparse matrix ‘determined’ from images is used to reconstruct the foreground that contains cracks, and the global threshold method is adopted to extract the crack patterns. The application of the DMD method to the three-point bending test demonstrates the efficiency in inspecting cracks with high accuracy. Accordingly, the geometric features, including the area and its projection in two major directions, are evaluated over time. The relationship between the geometric properties of cracks and load-displacement curves of UHPC is discussed. Due to the irregular shape of cracks in the spatial domain, the cracks are then transformed into the Fourier domain to assess their development. Results indicate that crack patterns in the Fourier domain exhibit a distinct concentration around a central position. Moreover, the power spectral density of cracks exhibits an increasing trend over time. The investigation into crack evolution in both the spatial and Fourier domains contributes significantly to elucidating the mechanical behavior of UHPC.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.