{"title":"将隐藏的兴趣社区可视化:天体生物学中基于主题的社交网络案例分析","authors":"Christophe Malaterre, Francis Lareau","doi":"10.1007/s11192-024-05047-7","DOIUrl":null,"url":null,"abstract":"<p>Author networks in science often rely on citation analyses. In such cases, as in others, network interpretation usually depends on supplementary data, notably about authors’ research domains when disciplinary interpretations are sought. More general social networks also face similar interpretation challenges as to the semantic content specificities of their members. In this research-in-progress, we propose to infer author networks not from citation analyses but from topic similarity analyses based on a topic-model of published documents. Such author networks reveal, as we call them, “hidden communities of interest” (HCoIs) whose semantic content can easily be interpreted by means of their associated topics in the model. We use an astrobiology corpus of full-text articles (<i>N</i> = 3,698) to illustrate the approach. Having conducted an LDA topic-model on all publications, we identify the underlying communities of authors by measuring author correlations in terms of topic distributions. Adding publication dates makes it possible to examine HCoI evolution over time. This approach to social networks supplements traditional methods in contexts where textual data are available.</p>","PeriodicalId":21755,"journal":{"name":"Scientometrics","volume":"4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing hidden communities of interest: A case-study analysis of topic-based social networks in astrobiology\",\"authors\":\"Christophe Malaterre, Francis Lareau\",\"doi\":\"10.1007/s11192-024-05047-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Author networks in science often rely on citation analyses. In such cases, as in others, network interpretation usually depends on supplementary data, notably about authors’ research domains when disciplinary interpretations are sought. More general social networks also face similar interpretation challenges as to the semantic content specificities of their members. In this research-in-progress, we propose to infer author networks not from citation analyses but from topic similarity analyses based on a topic-model of published documents. Such author networks reveal, as we call them, “hidden communities of interest” (HCoIs) whose semantic content can easily be interpreted by means of their associated topics in the model. We use an astrobiology corpus of full-text articles (<i>N</i> = 3,698) to illustrate the approach. Having conducted an LDA topic-model on all publications, we identify the underlying communities of authors by measuring author correlations in terms of topic distributions. Adding publication dates makes it possible to examine HCoI evolution over time. This approach to social networks supplements traditional methods in contexts where textual data are available.</p>\",\"PeriodicalId\":21755,\"journal\":{\"name\":\"Scientometrics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientometrics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s11192-024-05047-7\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientometrics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s11192-024-05047-7","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Visualizing hidden communities of interest: A case-study analysis of topic-based social networks in astrobiology
Author networks in science often rely on citation analyses. In such cases, as in others, network interpretation usually depends on supplementary data, notably about authors’ research domains when disciplinary interpretations are sought. More general social networks also face similar interpretation challenges as to the semantic content specificities of their members. In this research-in-progress, we propose to infer author networks not from citation analyses but from topic similarity analyses based on a topic-model of published documents. Such author networks reveal, as we call them, “hidden communities of interest” (HCoIs) whose semantic content can easily be interpreted by means of their associated topics in the model. We use an astrobiology corpus of full-text articles (N = 3,698) to illustrate the approach. Having conducted an LDA topic-model on all publications, we identify the underlying communities of authors by measuring author correlations in terms of topic distributions. Adding publication dates makes it possible to examine HCoI evolution over time. This approach to social networks supplements traditional methods in contexts where textual data are available.
期刊介绍:
Scientometrics aims at publishing original studies, short communications, preliminary reports, review papers, letters to the editor and book reviews on scientometrics. The topics covered are results of research concerned with the quantitative features and characteristics of science. Emphasis is placed on investigations in which the development and mechanism of science are studied by means of (statistical) mathematical methods.
The Journal also provides the reader with important up-to-date information about international meetings and events in scientometrics and related fields. Appropriate bibliographic compilations are published as a separate section. Due to its fully interdisciplinary character, Scientometrics is indispensable to research workers and research administrators throughout the world. It provides valuable assistance to librarians and documentalists in central scientific agencies, ministries, research institutes and laboratories.
Scientometrics includes the Journal of Research Communication Studies. Consequently its aims and scope cover that of the latter, namely, to bring the results of research investigations together in one place, in such a form that they will be of use not only to the investigators themselves but also to the entrepreneurs and research workers who form the object of these studies.