Helmut Harbrecht, Viacheslav Karnaev, Marc Schmidlin
{"title":"量化线性弹性中的领域不确定性","authors":"Helmut Harbrecht, Viacheslav Karnaev, Marc Schmidlin","doi":"10.1137/23m1578589","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 503-523, June 2024. <br/> Abstract.The present article considers the quantification of uncertainty for the equations of linear elasticity on random domains. To this end, we model the random domains as the images of some given fixed, nominal domain under random domain mappings, which are defined by a Karhunen–Loève expansion. We then prove the analytic regularity of the random solution with respect to the countable random input parameters which enter the problem through the Karhunen–Loève expansion of the random domain mappings. In particular, we provide appropriate bounds on arbitrary derivatives of the random solution with respect to those input parameters. These enable the use of state-of-the-art quadrature methods to compute deterministic statistics of quantities of interest, such as the mean and the variance of the random solution itself or the random von Mises stress, as integrals over the countable random input parameters in a dimensionally robust way. Numerical examples qualify and quantify the theoretical findings.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"13 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Domain Uncertainty in Linear Elasticity\",\"authors\":\"Helmut Harbrecht, Viacheslav Karnaev, Marc Schmidlin\",\"doi\":\"10.1137/23m1578589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 503-523, June 2024. <br/> Abstract.The present article considers the quantification of uncertainty for the equations of linear elasticity on random domains. To this end, we model the random domains as the images of some given fixed, nominal domain under random domain mappings, which are defined by a Karhunen–Loève expansion. We then prove the analytic regularity of the random solution with respect to the countable random input parameters which enter the problem through the Karhunen–Loève expansion of the random domain mappings. In particular, we provide appropriate bounds on arbitrary derivatives of the random solution with respect to those input parameters. These enable the use of state-of-the-art quadrature methods to compute deterministic statistics of quantities of interest, such as the mean and the variance of the random solution itself or the random von Mises stress, as integrals over the countable random input parameters in a dimensionally robust way. Numerical examples qualify and quantify the theoretical findings.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1578589\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1578589","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Quantifying Domain Uncertainty in Linear Elasticity
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 503-523, June 2024. Abstract.The present article considers the quantification of uncertainty for the equations of linear elasticity on random domains. To this end, we model the random domains as the images of some given fixed, nominal domain under random domain mappings, which are defined by a Karhunen–Loève expansion. We then prove the analytic regularity of the random solution with respect to the countable random input parameters which enter the problem through the Karhunen–Loève expansion of the random domain mappings. In particular, we provide appropriate bounds on arbitrary derivatives of the random solution with respect to those input parameters. These enable the use of state-of-the-art quadrature methods to compute deterministic statistics of quantities of interest, such as the mean and the variance of the random solution itself or the random von Mises stress, as integrals over the countable random input parameters in a dimensionally robust way. Numerical examples qualify and quantify the theoretical findings.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.