Helmut Harbrecht, Viacheslav Karnaev, Marc Schmidlin
{"title":"量化线性弹性中的领域不确定性","authors":"Helmut Harbrecht, Viacheslav Karnaev, Marc Schmidlin","doi":"10.1137/23m1578589","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 503-523, June 2024. <br/> Abstract.The present article considers the quantification of uncertainty for the equations of linear elasticity on random domains. To this end, we model the random domains as the images of some given fixed, nominal domain under random domain mappings, which are defined by a Karhunen–Loève expansion. We then prove the analytic regularity of the random solution with respect to the countable random input parameters which enter the problem through the Karhunen–Loève expansion of the random domain mappings. In particular, we provide appropriate bounds on arbitrary derivatives of the random solution with respect to those input parameters. These enable the use of state-of-the-art quadrature methods to compute deterministic statistics of quantities of interest, such as the mean and the variance of the random solution itself or the random von Mises stress, as integrals over the countable random input parameters in a dimensionally robust way. Numerical examples qualify and quantify the theoretical findings.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Domain Uncertainty in Linear Elasticity\",\"authors\":\"Helmut Harbrecht, Viacheslav Karnaev, Marc Schmidlin\",\"doi\":\"10.1137/23m1578589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 503-523, June 2024. <br/> Abstract.The present article considers the quantification of uncertainty for the equations of linear elasticity on random domains. To this end, we model the random domains as the images of some given fixed, nominal domain under random domain mappings, which are defined by a Karhunen–Loève expansion. We then prove the analytic regularity of the random solution with respect to the countable random input parameters which enter the problem through the Karhunen–Loève expansion of the random domain mappings. In particular, we provide appropriate bounds on arbitrary derivatives of the random solution with respect to those input parameters. These enable the use of state-of-the-art quadrature methods to compute deterministic statistics of quantities of interest, such as the mean and the variance of the random solution itself or the random von Mises stress, as integrals over the countable random input parameters in a dimensionally robust way. Numerical examples qualify and quantify the theoretical findings.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1578589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1578589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Quantifying Domain Uncertainty in Linear Elasticity
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 503-523, June 2024. Abstract.The present article considers the quantification of uncertainty for the equations of linear elasticity on random domains. To this end, we model the random domains as the images of some given fixed, nominal domain under random domain mappings, which are defined by a Karhunen–Loève expansion. We then prove the analytic regularity of the random solution with respect to the countable random input parameters which enter the problem through the Karhunen–Loève expansion of the random domain mappings. In particular, we provide appropriate bounds on arbitrary derivatives of the random solution with respect to those input parameters. These enable the use of state-of-the-art quadrature methods to compute deterministic statistics of quantities of interest, such as the mean and the variance of the random solution itself or the random von Mises stress, as integrals over the countable random input parameters in a dimensionally robust way. Numerical examples qualify and quantify the theoretical findings.