智慧的阴影通过大型语言模型对元认知和以道德为基础的叙事内容进行分类。

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-10-01 Epub Date: 2024-05-29 DOI:10.3758/s13428-024-02441-0
Alexander Stavropoulos, Damien L Crone, Igor Grossmann
{"title":"智慧的阴影通过大型语言模型对元认知和以道德为基础的叙事内容进行分类。","authors":"Alexander Stavropoulos, Damien L Crone, Igor Grossmann","doi":"10.3758/s13428-024-02441-0","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated large language models' (LLMs) efficacy in classifying complex psychological constructs like intellectual humility, perspective-taking, open-mindedness, and search for a compromise in narratives of 347 Canadian and American adults reflecting on a workplace conflict. Using state-of-the-art models like GPT-4 across few-shot and zero-shot paradigms and RoB-ELoC (RoBERTa -fine-tuned-on-Emotion-with-Logistic-Regression-Classifier), we compared their performance with expert human coders. Results showed robust classification by LLMs, with over 80% agreement and F1 scores above 0.85, and high human-model reliability (Cohen's κ Md across top models = .80). RoB-ELoC and few-shot GPT-4 were standout classifiers, although somewhat less effective in categorizing intellectual humility. We offer example workflows for easy integration into research. Our proof-of-concept findings indicate the viability of both open-source and commercial LLMs in automating the coding of complex constructs, potentially transforming social science research.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shadows of wisdom: Classifying meta-cognitive and morally grounded narrative content via large language models.\",\"authors\":\"Alexander Stavropoulos, Damien L Crone, Igor Grossmann\",\"doi\":\"10.3758/s13428-024-02441-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated large language models' (LLMs) efficacy in classifying complex psychological constructs like intellectual humility, perspective-taking, open-mindedness, and search for a compromise in narratives of 347 Canadian and American adults reflecting on a workplace conflict. Using state-of-the-art models like GPT-4 across few-shot and zero-shot paradigms and RoB-ELoC (RoBERTa -fine-tuned-on-Emotion-with-Logistic-Regression-Classifier), we compared their performance with expert human coders. Results showed robust classification by LLMs, with over 80% agreement and F1 scores above 0.85, and high human-model reliability (Cohen's κ Md across top models = .80). RoB-ELoC and few-shot GPT-4 were standout classifiers, although somewhat less effective in categorizing intellectual humility. We offer example workflows for easy integration into research. Our proof-of-concept findings indicate the viability of both open-source and commercial LLMs in automating the coding of complex constructs, potentially transforming social science research.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-024-02441-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02441-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了大型语言模型(LLMs)在对 347 名加拿大和美国成年人反映工作场所冲突的叙述中的复杂心理结构(如智力谦逊、透视能力、开放心态和寻求妥协)进行分类方面的功效。我们使用了最先进的模型,如 GPT-4(跨少拍和零拍范式)和 RoB-ELoC(RoBERTa-fine-tuned-on-Emotion-with-Logistic-Regression-Classifier),将它们的性能与人类专业编码员进行了比较。结果显示,LLMs 的分类能力很强,一致性超过 80%,F1 分数超过 0.85,而且人类模型的可靠性很高(顶级模型的 Cohen's κ Md = .80)。RoB-ELoC 和少数几个 GPT-4 是出色的分类器,但在智力谦逊的分类方面效果稍差。我们提供了工作流程示例,以便于集成到研究中。我们的概念验证结果表明,开源和商业 LLM 在自动编码复杂结构方面都是可行的,有可能改变社会科学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shadows of wisdom: Classifying meta-cognitive and morally grounded narrative content via large language models.

We investigated large language models' (LLMs) efficacy in classifying complex psychological constructs like intellectual humility, perspective-taking, open-mindedness, and search for a compromise in narratives of 347 Canadian and American adults reflecting on a workplace conflict. Using state-of-the-art models like GPT-4 across few-shot and zero-shot paradigms and RoB-ELoC (RoBERTa -fine-tuned-on-Emotion-with-Logistic-Regression-Classifier), we compared their performance with expert human coders. Results showed robust classification by LLMs, with over 80% agreement and F1 scores above 0.85, and high human-model reliability (Cohen's κ Md across top models = .80). RoB-ELoC and few-shot GPT-4 were standout classifiers, although somewhat less effective in categorizing intellectual humility. We offer example workflows for easy integration into research. Our proof-of-concept findings indicate the viability of both open-source and commercial LLMs in automating the coding of complex constructs, potentially transforming social science research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1