{"title":"败血症临床决策支持系统在识别急诊科败血症患者方面的功效。","authors":"Yueh-Tseng Hou, Meng-Yu Wu, Yu-Long Chen, Tzu-Hung Liu, Ruei-Ting Cheng, Pei-Lan Hsu, An-Kuo Chao, Ching-Chieh Huang, Fei-Wen Cheng, Po-Lin Lai, I-Feng Wu, Giou-Teng Yiang","doi":"10.1097/SHK.0000000000002394","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Background: Early prediction of sepsis onset is crucial for reducing mortality and the overall cost burden of sepsis treatment. Currently, few effective and accurate prediction tools are available for sepsis. Hence, in this study, we developed an effective sepsis clinical decision support system (S-CDSS) to assist emergency physicians to predict sepsis. Methods: This study included patients who had visited the emergency department (ED) of Taipei Tzu Chi Hospital, Taiwan, between January 1, 2020, and June 31, 2022. The patients were divided into a derivation cohort (n = 70,758) and a validation cohort (n = 27,545). The derivation cohort was subjected to 6-fold stratified cross-validation, reserving 20% of the data (n = 11,793) for model testing. The primary study outcome was a sepsis prediction ( International Classification of Diseases , Tenth Revision , Clinical Modification ) before discharge from the ED. The S-CDSS incorporated the LightGBM algorithm to ensure timely and accurate prediction of sepsis. The validation cohort was subjected to multivariate logistic regression to identify the associations of S-CDSS-based high- and medium-risk alerts with clinical outcomes in the overall patient cohort. For each clinical outcome in high- and medium-risk patients, we calculated the sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and accuracy of S-CDSS-based predictions. Results: The S-CDSS was integrated into our hospital information system. The system featured three risk warning labels (red, yellow, and white, indicating high, medium, and low risks, respectively) to alert emergency physicians. The sensitivity and specificity of the S-CDSS in the derivation cohort were 86.9% and 92.5%, respectively. In the validation cohort, high- and medium-risk alerts were significantly associated with all clinical outcomes, exhibiting high prediction specificity for intubation, general ward admission, intensive care unit admission, ED mortality, and in-hospital mortality (93.29%, 97.32%, 94.03%, 93.04%, and 93.97%, respectively). Conclusion: Our findings suggest that the S-CDSS can effectively identify patients with suspected sepsis in the ED. Furthermore, S-CDSS-based predictions appear to be strongly associated with clinical outcomes in patients with sepsis.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"480-487"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFICACY OF A SEPSIS CLINICAL DECISION SUPPORT SYSTEM IN IDENTIFYING PATIENTS WITH SEPSIS IN THE EMERGENCY DEPARTMENT.\",\"authors\":\"Yueh-Tseng Hou, Meng-Yu Wu, Yu-Long Chen, Tzu-Hung Liu, Ruei-Ting Cheng, Pei-Lan Hsu, An-Kuo Chao, Ching-Chieh Huang, Fei-Wen Cheng, Po-Lin Lai, I-Feng Wu, Giou-Teng Yiang\",\"doi\":\"10.1097/SHK.0000000000002394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Background: Early prediction of sepsis onset is crucial for reducing mortality and the overall cost burden of sepsis treatment. Currently, few effective and accurate prediction tools are available for sepsis. Hence, in this study, we developed an effective sepsis clinical decision support system (S-CDSS) to assist emergency physicians to predict sepsis. Methods: This study included patients who had visited the emergency department (ED) of Taipei Tzu Chi Hospital, Taiwan, between January 1, 2020, and June 31, 2022. The patients were divided into a derivation cohort (n = 70,758) and a validation cohort (n = 27,545). The derivation cohort was subjected to 6-fold stratified cross-validation, reserving 20% of the data (n = 11,793) for model testing. The primary study outcome was a sepsis prediction ( International Classification of Diseases , Tenth Revision , Clinical Modification ) before discharge from the ED. The S-CDSS incorporated the LightGBM algorithm to ensure timely and accurate prediction of sepsis. The validation cohort was subjected to multivariate logistic regression to identify the associations of S-CDSS-based high- and medium-risk alerts with clinical outcomes in the overall patient cohort. For each clinical outcome in high- and medium-risk patients, we calculated the sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and accuracy of S-CDSS-based predictions. Results: The S-CDSS was integrated into our hospital information system. The system featured three risk warning labels (red, yellow, and white, indicating high, medium, and low risks, respectively) to alert emergency physicians. The sensitivity and specificity of the S-CDSS in the derivation cohort were 86.9% and 92.5%, respectively. In the validation cohort, high- and medium-risk alerts were significantly associated with all clinical outcomes, exhibiting high prediction specificity for intubation, general ward admission, intensive care unit admission, ED mortality, and in-hospital mortality (93.29%, 97.32%, 94.03%, 93.04%, and 93.97%, respectively). Conclusion: Our findings suggest that the S-CDSS can effectively identify patients with suspected sepsis in the ED. Furthermore, S-CDSS-based predictions appear to be strongly associated with clinical outcomes in patients with sepsis.</p>\",\"PeriodicalId\":21667,\"journal\":{\"name\":\"SHOCK\",\"volume\":\" \",\"pages\":\"480-487\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHOCK\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SHK.0000000000002394\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002394","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
EFFICACY OF A SEPSIS CLINICAL DECISION SUPPORT SYSTEM IN IDENTIFYING PATIENTS WITH SEPSIS IN THE EMERGENCY DEPARTMENT.
Abstract: Background: Early prediction of sepsis onset is crucial for reducing mortality and the overall cost burden of sepsis treatment. Currently, few effective and accurate prediction tools are available for sepsis. Hence, in this study, we developed an effective sepsis clinical decision support system (S-CDSS) to assist emergency physicians to predict sepsis. Methods: This study included patients who had visited the emergency department (ED) of Taipei Tzu Chi Hospital, Taiwan, between January 1, 2020, and June 31, 2022. The patients were divided into a derivation cohort (n = 70,758) and a validation cohort (n = 27,545). The derivation cohort was subjected to 6-fold stratified cross-validation, reserving 20% of the data (n = 11,793) for model testing. The primary study outcome was a sepsis prediction ( International Classification of Diseases , Tenth Revision , Clinical Modification ) before discharge from the ED. The S-CDSS incorporated the LightGBM algorithm to ensure timely and accurate prediction of sepsis. The validation cohort was subjected to multivariate logistic regression to identify the associations of S-CDSS-based high- and medium-risk alerts with clinical outcomes in the overall patient cohort. For each clinical outcome in high- and medium-risk patients, we calculated the sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and accuracy of S-CDSS-based predictions. Results: The S-CDSS was integrated into our hospital information system. The system featured three risk warning labels (red, yellow, and white, indicating high, medium, and low risks, respectively) to alert emergency physicians. The sensitivity and specificity of the S-CDSS in the derivation cohort were 86.9% and 92.5%, respectively. In the validation cohort, high- and medium-risk alerts were significantly associated with all clinical outcomes, exhibiting high prediction specificity for intubation, general ward admission, intensive care unit admission, ED mortality, and in-hospital mortality (93.29%, 97.32%, 94.03%, 93.04%, and 93.97%, respectively). Conclusion: Our findings suggest that the S-CDSS can effectively identify patients with suspected sepsis in the ED. Furthermore, S-CDSS-based predictions appear to be strongly associated with clinical outcomes in patients with sepsis.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.