重症监护病房血液恶性肿瘤患者 1 年死亡率预测模型的开发与验证。

Q4 Medicine Critical care explorations Pub Date : 2024-05-24 eCollection Date: 2024-06-01 DOI:10.1097/CCE.0000000000001093
Jan-Willem H L Boldingh, M Sesmu Arbous, Bart J Biemond, Nicole M A Blijlevens, Jasper van Bommel, Murielle G E C Hilkens, Nuray Kusadasi, Marcella C A Muller, Vera A de Vries, Ewout W Steyerberg, Walter M van den Bergh
{"title":"重症监护病房血液恶性肿瘤患者 1 年死亡率预测模型的开发与验证。","authors":"Jan-Willem H L Boldingh, M Sesmu Arbous, Bart J Biemond, Nicole M A Blijlevens, Jasper van Bommel, Murielle G E C Hilkens, Nuray Kusadasi, Marcella C A Muller, Vera A de Vries, Ewout W Steyerberg, Walter M van den Bergh","doi":"10.1097/CCE.0000000000001093","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate a prediction model for 1-year mortality in patients with a hematologic malignancy acutely admitted to the ICU.</p><p><strong>Design: </strong>A retrospective cohort study.</p><p><strong>Setting: </strong>Five university hospitals in the Netherlands between 2002 and 2015.</p><p><strong>Patients: </strong>A total of 1097 consecutive patients with a hematologic malignancy were acutely admitted to the ICU for at least 24 h.</p><p><strong>Interventions: </strong>None.</p><p><strong>Measurements and main results: </strong>We created a 13-variable model from 22 potential predictors. Key predictors included active disease, age, previous hematopoietic stem cell transplantation, mechanical ventilation, lowest platelet count, acute kidney injury, maximum heart rate, and type of malignancy. A bootstrap procedure reduced overfitting and improved the model's generalizability. This involved estimating the optimism in the initial model and shrinking the regression coefficients accordingly in the final model. We assessed performance using internal-external cross-validation by center and compared it with the Acute Physiology and Chronic Health Evaluation II model. Additionally, we evaluated clinical usefulness through decision curve analysis. The overall 1-year mortality rate observed in the study was 62% (95% CI, 59-65). Our 13-variable prediction model demonstrated acceptable calibration and discrimination at internal-external validation across centers (<i>C</i>-statistic 0.70; 95% CI, 0.63-0.77), outperforming the Acute Physiology and Chronic Health Evaluation II model (<i>C</i>-statistic 0.61; 95% CI, 0.57-0.65). Decision curve analysis indicated overall net benefit within a clinically relevant threshold probability range of 60-100% predicted 1-year mortality.</p><p><strong>Conclusions: </strong>Our newly developed 13-variable prediction model predicts 1-year mortality in hematologic malignancy patients admitted to the ICU more accurately than the Acute Physiology and Chronic Health Evaluation II model. This model may aid in shared decision-making regarding the continuation of ICU care and end-of-life considerations.</p>","PeriodicalId":93957,"journal":{"name":"Critical care explorations","volume":"6 6","pages":"e1093"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132307/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Prediction Model for 1-Year Mortality in Patients With a Hematologic Malignancy Admitted to the ICU.\",\"authors\":\"Jan-Willem H L Boldingh, M Sesmu Arbous, Bart J Biemond, Nicole M A Blijlevens, Jasper van Bommel, Murielle G E C Hilkens, Nuray Kusadasi, Marcella C A Muller, Vera A de Vries, Ewout W Steyerberg, Walter M van den Bergh\",\"doi\":\"10.1097/CCE.0000000000001093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To develop and validate a prediction model for 1-year mortality in patients with a hematologic malignancy acutely admitted to the ICU.</p><p><strong>Design: </strong>A retrospective cohort study.</p><p><strong>Setting: </strong>Five university hospitals in the Netherlands between 2002 and 2015.</p><p><strong>Patients: </strong>A total of 1097 consecutive patients with a hematologic malignancy were acutely admitted to the ICU for at least 24 h.</p><p><strong>Interventions: </strong>None.</p><p><strong>Measurements and main results: </strong>We created a 13-variable model from 22 potential predictors. Key predictors included active disease, age, previous hematopoietic stem cell transplantation, mechanical ventilation, lowest platelet count, acute kidney injury, maximum heart rate, and type of malignancy. A bootstrap procedure reduced overfitting and improved the model's generalizability. This involved estimating the optimism in the initial model and shrinking the regression coefficients accordingly in the final model. We assessed performance using internal-external cross-validation by center and compared it with the Acute Physiology and Chronic Health Evaluation II model. Additionally, we evaluated clinical usefulness through decision curve analysis. The overall 1-year mortality rate observed in the study was 62% (95% CI, 59-65). Our 13-variable prediction model demonstrated acceptable calibration and discrimination at internal-external validation across centers (<i>C</i>-statistic 0.70; 95% CI, 0.63-0.77), outperforming the Acute Physiology and Chronic Health Evaluation II model (<i>C</i>-statistic 0.61; 95% CI, 0.57-0.65). Decision curve analysis indicated overall net benefit within a clinically relevant threshold probability range of 60-100% predicted 1-year mortality.</p><p><strong>Conclusions: </strong>Our newly developed 13-variable prediction model predicts 1-year mortality in hematologic malignancy patients admitted to the ICU more accurately than the Acute Physiology and Chronic Health Evaluation II model. This model may aid in shared decision-making regarding the continuation of ICU care and end-of-life considerations.</p>\",\"PeriodicalId\":93957,\"journal\":{\"name\":\"Critical care explorations\",\"volume\":\"6 6\",\"pages\":\"e1093\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132307/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical care explorations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/CCE.0000000000001093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical care explorations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/CCE.0000000000001093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的开发并验证血液系统恶性肿瘤患者入住重症监护室后 1 年死亡率的预测模型:设计:一项回顾性队列研究:2002年至2015年期间荷兰的五所大学医院:干预措施:无:无干预措施:我们从 22 个潜在预测因素中创建了一个 13 变量模型。主要预测因素包括活动性疾病、年龄、既往造血干细胞移植、机械通气、最低血小板计数、急性肾损伤、最大心率和恶性肿瘤类型。自举程序减少了过度拟合,提高了模型的普适性。这包括在初始模型中估计乐观程度,并在最终模型中相应缩小回归系数。我们通过中心内部和外部交叉验证来评估模型的性能,并将其与急性生理学和慢性健康评估 II 模型进行比较。此外,我们还通过决策曲线分析评估了临床实用性。研究观察到的 1 年总死亡率为 62%(95% CI,59-65)。我们的 13 变量预测模型在各中心的内部-外部验证中表现出了可接受的校准和区分度(C 统计量 0.70;95% CI,0.63-0.77),优于急性生理学和慢性健康评估 II 模型(C 统计量 0.61;95% CI,0.57-0.65)。决策曲线分析表明,在预测的 1 年死亡率为 60%-100% 的临床相关阈值概率范围内,总体净获益:与急性生理学和慢性健康评估 II 模型相比,我们新开发的 13 变量预测模型能更准确地预测入住 ICU 的血液恶性肿瘤患者的 1 年死亡率。该模型有助于就继续接受重症监护室护理和临终关怀做出共同决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and Validation of a Prediction Model for 1-Year Mortality in Patients With a Hematologic Malignancy Admitted to the ICU.

Objectives: To develop and validate a prediction model for 1-year mortality in patients with a hematologic malignancy acutely admitted to the ICU.

Design: A retrospective cohort study.

Setting: Five university hospitals in the Netherlands between 2002 and 2015.

Patients: A total of 1097 consecutive patients with a hematologic malignancy were acutely admitted to the ICU for at least 24 h.

Interventions: None.

Measurements and main results: We created a 13-variable model from 22 potential predictors. Key predictors included active disease, age, previous hematopoietic stem cell transplantation, mechanical ventilation, lowest platelet count, acute kidney injury, maximum heart rate, and type of malignancy. A bootstrap procedure reduced overfitting and improved the model's generalizability. This involved estimating the optimism in the initial model and shrinking the regression coefficients accordingly in the final model. We assessed performance using internal-external cross-validation by center and compared it with the Acute Physiology and Chronic Health Evaluation II model. Additionally, we evaluated clinical usefulness through decision curve analysis. The overall 1-year mortality rate observed in the study was 62% (95% CI, 59-65). Our 13-variable prediction model demonstrated acceptable calibration and discrimination at internal-external validation across centers (C-statistic 0.70; 95% CI, 0.63-0.77), outperforming the Acute Physiology and Chronic Health Evaluation II model (C-statistic 0.61; 95% CI, 0.57-0.65). Decision curve analysis indicated overall net benefit within a clinically relevant threshold probability range of 60-100% predicted 1-year mortality.

Conclusions: Our newly developed 13-variable prediction model predicts 1-year mortality in hematologic malignancy patients admitted to the ICU more accurately than the Acute Physiology and Chronic Health Evaluation II model. This model may aid in shared decision-making regarding the continuation of ICU care and end-of-life considerations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
"Awake" Cannulation of Patients for Venovenous Extracorporeal Membrane Oxygen: An Analysis of the Extracorporeal Life Support Organization Registry. Critical Data for Critical Care: A Primer on Leveraging Electronic Health Record Data for Research From Society of Critical Care Medicine's Panel on Data Sharing and Harmonization. Clinical Subtype Trajectories in Sepsis Patients Admitted to the ICU: A Secondary Analysis of an Observational Study. Septic Shock Requiring Three Vasopressors: Patient Demographics and Outcomes. Septic Shock Requiring Three Vasopressors: Patient Demographics and Outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1