{"title":"预测蛋白质聚集","authors":"Kavyan Khalili, Farnoosh Farzam, Bahareh Dabirmanesh, Khosro Khajeh","doi":"10.1016/bs.pmbts.2024.03.005","DOIUrl":null,"url":null,"abstract":"<p><p>The scientific community is very interested in protein aggregation because of its involvement in several neurodegenerative diseases and its significance in industry. Remarkably, fibrillar aggregates are utilized naturally for constructing structural scaffolds or creating biological switches and may be intentionally designed to construct versatile nanomaterials. Consequently, there is a significant need to rationalize and predict protein aggregation. Researchers have developed various computational methodologies and algorithms to predict protein aggregation and understand its underlying mechanics. This chapter aims to summarize the significant advancements in computational methods, accessible resources, and prospective developments in the field of in silico research. We assess the existing computational tools for predicting protein aggregation propensities, detecting areas that are prone to sequential and structural aggregation, analyzing the effects of mutations on protein aggregation, or identifying prion-like domains.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"229-263"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of protein aggregation.\",\"authors\":\"Kavyan Khalili, Farnoosh Farzam, Bahareh Dabirmanesh, Khosro Khajeh\",\"doi\":\"10.1016/bs.pmbts.2024.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The scientific community is very interested in protein aggregation because of its involvement in several neurodegenerative diseases and its significance in industry. Remarkably, fibrillar aggregates are utilized naturally for constructing structural scaffolds or creating biological switches and may be intentionally designed to construct versatile nanomaterials. Consequently, there is a significant need to rationalize and predict protein aggregation. Researchers have developed various computational methodologies and algorithms to predict protein aggregation and understand its underlying mechanics. This chapter aims to summarize the significant advancements in computational methods, accessible resources, and prospective developments in the field of in silico research. We assess the existing computational tools for predicting protein aggregation propensities, detecting areas that are prone to sequential and structural aggregation, analyzing the effects of mutations on protein aggregation, or identifying prion-like domains.</p>\",\"PeriodicalId\":21157,\"journal\":{\"name\":\"Progress in molecular biology and translational science\",\"volume\":\"206 \",\"pages\":\"229-263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular biology and translational science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2024.03.005\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2024.03.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The scientific community is very interested in protein aggregation because of its involvement in several neurodegenerative diseases and its significance in industry. Remarkably, fibrillar aggregates are utilized naturally for constructing structural scaffolds or creating biological switches and may be intentionally designed to construct versatile nanomaterials. Consequently, there is a significant need to rationalize and predict protein aggregation. Researchers have developed various computational methodologies and algorithms to predict protein aggregation and understand its underlying mechanics. This chapter aims to summarize the significant advancements in computational methods, accessible resources, and prospective developments in the field of in silico research. We assess the existing computational tools for predicting protein aggregation propensities, detecting areas that are prone to sequential and structural aggregation, analyzing the effects of mutations on protein aggregation, or identifying prion-like domains.
期刊介绍:
Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.