{"title":"特约编辑:植入式生物电子学。","authors":"Yael Hanein, Josef Goding","doi":"10.1063/5.0209537","DOIUrl":null,"url":null,"abstract":"<p><p>The realm of implantable bioelectronics represents a frontier in medical science, merging technology, biology, and medicine to innovate treatments that enhance, restore, or monitor physiological functions. This field has yielded devices like cochlear implants, cardiac pacemakers, deep brain stimulators, and vagus nerve stimulators, each designed to address a specific health condition, ranging from sensorineural hearing loss to chronic pain, neurological disorders, and heart rhythm irregularities. Such devices underscore the potential of bioelectronics to significantly improve patient outcomes and quality of life. Recent technological breakthroughs in materials science, nanotechnology, and microfabrication have enabled the development of more sophisticated, smaller, and biocompatible bioelectronic devices. However, the field also encounters challenges, particularly in extending the capabilities of devices such as retinal prostheses, which aim to restore vision but currently offer limited visual acuity. Research in implantable bioelectronics is highly timely, driven by an aging global population with a growing prevalence of chronic diseases that could benefit from these technologies. The convergence of societal health needs, advancing technological capabilities, and a supportive ecosystem for innovation marks this era as pivotal for bioelectronic research.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 2","pages":"020401"},"PeriodicalIF":6.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11136517/pdf/","citationCount":"0","resultStr":"{\"title\":\"Guest Editorial: Implantable bioelectronics.\",\"authors\":\"Yael Hanein, Josef Goding\",\"doi\":\"10.1063/5.0209537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The realm of implantable bioelectronics represents a frontier in medical science, merging technology, biology, and medicine to innovate treatments that enhance, restore, or monitor physiological functions. This field has yielded devices like cochlear implants, cardiac pacemakers, deep brain stimulators, and vagus nerve stimulators, each designed to address a specific health condition, ranging from sensorineural hearing loss to chronic pain, neurological disorders, and heart rhythm irregularities. Such devices underscore the potential of bioelectronics to significantly improve patient outcomes and quality of life. Recent technological breakthroughs in materials science, nanotechnology, and microfabrication have enabled the development of more sophisticated, smaller, and biocompatible bioelectronic devices. However, the field also encounters challenges, particularly in extending the capabilities of devices such as retinal prostheses, which aim to restore vision but currently offer limited visual acuity. Research in implantable bioelectronics is highly timely, driven by an aging global population with a growing prevalence of chronic diseases that could benefit from these technologies. The convergence of societal health needs, advancing technological capabilities, and a supportive ecosystem for innovation marks this era as pivotal for bioelectronic research.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"8 2\",\"pages\":\"020401\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11136517/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0209537\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0209537","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The realm of implantable bioelectronics represents a frontier in medical science, merging technology, biology, and medicine to innovate treatments that enhance, restore, or monitor physiological functions. This field has yielded devices like cochlear implants, cardiac pacemakers, deep brain stimulators, and vagus nerve stimulators, each designed to address a specific health condition, ranging from sensorineural hearing loss to chronic pain, neurological disorders, and heart rhythm irregularities. Such devices underscore the potential of bioelectronics to significantly improve patient outcomes and quality of life. Recent technological breakthroughs in materials science, nanotechnology, and microfabrication have enabled the development of more sophisticated, smaller, and biocompatible bioelectronic devices. However, the field also encounters challenges, particularly in extending the capabilities of devices such as retinal prostheses, which aim to restore vision but currently offer limited visual acuity. Research in implantable bioelectronics is highly timely, driven by an aging global population with a growing prevalence of chronic diseases that could benefit from these technologies. The convergence of societal health needs, advancing technological capabilities, and a supportive ecosystem for innovation marks this era as pivotal for bioelectronic research.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology