Mallika Bhattacharya , Savanna F Lyda , Elissa P Lei
{"title":"染色质绝缘体机制通过控制三维基因组的整体组织,确保基因的准确表达。","authors":"Mallika Bhattacharya , Savanna F Lyda , Elissa P Lei","doi":"10.1016/j.gde.2024.102208","DOIUrl":null,"url":null,"abstract":"<div><p>Chromatin insulators are DNA–protein complexes that promote specificity of enhancer–promoter interactions and maintain distinct transcriptional states through control of 3D genome organization. In this review, we highlight recent work visualizing how mammalian CCCTC-binding factor acts as a boundary to dynamic DNA loop extrusion mediated by cohesin. We also discuss new studies in both mammals and <em>Drosophila</em> that elucidate biological redundancy of chromatin insulator function and interplay with transcription with respect to topologically associating domain formation. Finally, we present novel concepts in spatiotemporal regulation of chromatin insulator function during differentiation and development and possible consequences of disrupted insulator activity on cellular proliferation.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatin insulator mechanisms ensure accurate gene expression by controlling overall 3D genome organization\",\"authors\":\"Mallika Bhattacharya , Savanna F Lyda , Elissa P Lei\",\"doi\":\"10.1016/j.gde.2024.102208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chromatin insulators are DNA–protein complexes that promote specificity of enhancer–promoter interactions and maintain distinct transcriptional states through control of 3D genome organization. In this review, we highlight recent work visualizing how mammalian CCCTC-binding factor acts as a boundary to dynamic DNA loop extrusion mediated by cohesin. We also discuss new studies in both mammals and <em>Drosophila</em> that elucidate biological redundancy of chromatin insulator function and interplay with transcription with respect to topologically associating domain formation. Finally, we present novel concepts in spatiotemporal regulation of chromatin insulator function during differentiation and development and possible consequences of disrupted insulator activity on cellular proliferation.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000571\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000571","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
染色质绝缘子是一种 DNA 蛋白复合物,它能促进增强子-启动子相互作用的特异性,并通过控制三维基因组组织来维持不同的转录状态。在这篇综述中,我们重点介绍了最近的研究成果,这些成果直观地展示了哺乳动物的 CCCTC 结合因子是如何在凝聚素的介导下充当动态 DNA 环挤压的边界的。我们还讨论了哺乳动物和果蝇的新研究,这些研究阐明了染色质绝缘体功能的生物学冗余性以及与转录在拓扑关联域形成方面的相互作用。最后,我们介绍了染色质绝缘体功能在分化和发育过程中的时空调控新概念,以及绝缘体活动紊乱对细胞增殖可能造成的后果。
Chromatin insulator mechanisms ensure accurate gene expression by controlling overall 3D genome organization
Chromatin insulators are DNA–protein complexes that promote specificity of enhancer–promoter interactions and maintain distinct transcriptional states through control of 3D genome organization. In this review, we highlight recent work visualizing how mammalian CCCTC-binding factor acts as a boundary to dynamic DNA loop extrusion mediated by cohesin. We also discuss new studies in both mammals and Drosophila that elucidate biological redundancy of chromatin insulator function and interplay with transcription with respect to topologically associating domain formation. Finally, we present novel concepts in spatiotemporal regulation of chromatin insulator function during differentiation and development and possible consequences of disrupted insulator activity on cellular proliferation.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)