用于分析热电 MHD 的改进型格林-纳格迪分数阶模型

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS International Journal of Numerical Methods for Heat & Fluid Flow Pub Date : 2024-05-31 DOI:10.1108/hff-02-2024-0133
Mohamed M. Hendy, Magdy A. Ezzat
{"title":"用于分析热电 MHD 的改进型格林-纳格迪分数阶模型","authors":"Mohamed M. Hendy, Magdy A. Ezzat","doi":"10.1108/hff-02-2024-0133","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Whereas, the classical Green-Naghdi Type II (GN-II) model struggles to accurately represent the thermo-mechanical behavior of thermoelectric MHD due to its inability to account for the memory effect. A new mathematical model of the GN-II theory incorporates a fractional order of heat transport to address this issue.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The employment of the matrix exponential method, which forms the basis of the state-space approach in contemporary theory, is central to this strategy. The resulting formulation, together with the Laplace transform techniques, is applied to a variety of problems. Solutions to a thermal shock problem and to a problem of a layer media both without heat sources are obtained. Also, a problem with the distribution of heat sources is considered. The numerical technique is used to achieve the Laplace transform inversion.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>According to the numerical results and its graphs, the influences of the fractional order parameters, figure-of-merit factor, thermoelectric power and Peltier coefficient on the behavior of the field quantities are investigated in the new theory.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The new modeling of thermoelectric MHD has advanced significantly as a result of this work, providing a more thorough and precise tool for forecasting the behavior of these materials under a range of thermal and magnetic conditions.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Green-Naghdi fractional order model for analyzing thermoelectric MHD\",\"authors\":\"Mohamed M. Hendy, Magdy A. Ezzat\",\"doi\":\"10.1108/hff-02-2024-0133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Whereas, the classical Green-Naghdi Type II (GN-II) model struggles to accurately represent the thermo-mechanical behavior of thermoelectric MHD due to its inability to account for the memory effect. A new mathematical model of the GN-II theory incorporates a fractional order of heat transport to address this issue.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The employment of the matrix exponential method, which forms the basis of the state-space approach in contemporary theory, is central to this strategy. The resulting formulation, together with the Laplace transform techniques, is applied to a variety of problems. Solutions to a thermal shock problem and to a problem of a layer media both without heat sources are obtained. Also, a problem with the distribution of heat sources is considered. The numerical technique is used to achieve the Laplace transform inversion.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>According to the numerical results and its graphs, the influences of the fractional order parameters, figure-of-merit factor, thermoelectric power and Peltier coefficient on the behavior of the field quantities are investigated in the new theory.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The new modeling of thermoelectric MHD has advanced significantly as a result of this work, providing a more thorough and precise tool for forecasting the behavior of these materials under a range of thermal and magnetic conditions.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-02-2024-0133\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-02-2024-0133","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的由于经典的格林-纳格迪 II 型(GN-II)模型无法解释记忆效应,因此难以准确表示热电 MHD 的热机械行为。为解决这一问题,GN-II 理论的一个新数学模型纳入了分数阶热传输。由此产生的公式与拉普拉斯变换技术一起被应用于各种问题。我们获得了热冲击问题和无热源层介质问题的解决方案。此外,还考虑了热源分布问题。根据数值结果及其图表,新理论研究了分数阶参数、商数因子、热电功率和珀尔帖系数对场量行为的影响。原创性/价值由于这项工作,热电 MHD 的新建模取得了重大进展,为预测这些材料在一系列热和磁条件下的行为提供了更全面、更精确的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A modified Green-Naghdi fractional order model for analyzing thermoelectric MHD

Purpose

Whereas, the classical Green-Naghdi Type II (GN-II) model struggles to accurately represent the thermo-mechanical behavior of thermoelectric MHD due to its inability to account for the memory effect. A new mathematical model of the GN-II theory incorporates a fractional order of heat transport to address this issue.

Design/methodology/approach

The employment of the matrix exponential method, which forms the basis of the state-space approach in contemporary theory, is central to this strategy. The resulting formulation, together with the Laplace transform techniques, is applied to a variety of problems. Solutions to a thermal shock problem and to a problem of a layer media both without heat sources are obtained. Also, a problem with the distribution of heat sources is considered. The numerical technique is used to achieve the Laplace transform inversion.

Findings

According to the numerical results and its graphs, the influences of the fractional order parameters, figure-of-merit factor, thermoelectric power and Peltier coefficient on the behavior of the field quantities are investigated in the new theory.

Originality/value

The new modeling of thermoelectric MHD has advanced significantly as a result of this work, providing a more thorough and precise tool for forecasting the behavior of these materials under a range of thermal and magnetic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
期刊最新文献
Electroosmosis-modulated Darcy–Brinkman flow in sinusoidal microfluidic pipe: an analytical approach Quantification analysis of high-speed train aerodynamics with geometric uncertainty of streamlined shape Slip flow between corotating disks with heat transfer Structural dynamic responses evaluation of pedestrian bridge under effect of aerodynamic disturbance of high-speed train Linear and energy stability analyses of onset of Darcy-Bénard convection due to combustion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1