四羟基二硼的热稳定性

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2024-05-30 DOI:10.1021/acs.oprd.4c00159
Shasha Zhang*, Simon Shun Wang Leung and Dale Vanyo, 
{"title":"四羟基二硼的热稳定性","authors":"Shasha Zhang*,&nbsp;Simon Shun Wang Leung and Dale Vanyo,&nbsp;","doi":"10.1021/acs.oprd.4c00159","DOIUrl":null,"url":null,"abstract":"<p >Despite the widespread application of diboron reagents in Suzuki–Miyaura borylation reactions, the thermal stability of diboron compounds is poorly understood. Seven commonly used diboron reagents were selected to investigate their thermal stability using Differential Scanning Calorimetry (DSC). Tetrahydroxydiboron (BBA) was specifically chosen for comprehensive safety characterization, considering the high thermal risk identified during the DSC screening. The decomposition of BBA was further explored using DSC in conjunction with Advanced Thermokinetics Software (AKTS), as well as Accelerating Rate Calorimetry (ARC) and Differential Accelerating Rate Calorimetry (DARC). Key safety parameters, such as the temperature at which the time to the maximum rate is 24 h (TMR<sub>24</sub> and <i>T</i><sub>D24</sub>), were estimated. Consistent results for TMR<sub>24</sub> were obtained across various methods, affirming the reliability of these techniques in the kinetic analysis. DARC and ARC testing reveal an exceptionally rapid thermal runaway for BBA to the extent that the self-heating rate cannot be tracked within the instrument’s limits. Furthermore, BBA was found to be insensitive to impact or friction. This study presents the general methodology and specific findings for BBA, with the aim of providing industry guidance for conducting process safety assessment and ensuring the safe utilization of diboron reagents during process development and scale-up.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Stability of Tetrahydroxydiboron\",\"authors\":\"Shasha Zhang*,&nbsp;Simon Shun Wang Leung and Dale Vanyo,&nbsp;\",\"doi\":\"10.1021/acs.oprd.4c00159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Despite the widespread application of diboron reagents in Suzuki–Miyaura borylation reactions, the thermal stability of diboron compounds is poorly understood. Seven commonly used diboron reagents were selected to investigate their thermal stability using Differential Scanning Calorimetry (DSC). Tetrahydroxydiboron (BBA) was specifically chosen for comprehensive safety characterization, considering the high thermal risk identified during the DSC screening. The decomposition of BBA was further explored using DSC in conjunction with Advanced Thermokinetics Software (AKTS), as well as Accelerating Rate Calorimetry (ARC) and Differential Accelerating Rate Calorimetry (DARC). Key safety parameters, such as the temperature at which the time to the maximum rate is 24 h (TMR<sub>24</sub> and <i>T</i><sub>D24</sub>), were estimated. Consistent results for TMR<sub>24</sub> were obtained across various methods, affirming the reliability of these techniques in the kinetic analysis. DARC and ARC testing reveal an exceptionally rapid thermal runaway for BBA to the extent that the self-heating rate cannot be tracked within the instrument’s limits. Furthermore, BBA was found to be insensitive to impact or friction. This study presents the general methodology and specific findings for BBA, with the aim of providing industry guidance for conducting process safety assessment and ensuring the safe utilization of diboron reagents during process development and scale-up.</p>\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00159\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00159","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

尽管二硼试剂在铃木-宫浦硼酰化反应中应用广泛,但人们对二硼化合物的热稳定性却知之甚少。我们选择了七种常用的二硼试剂,使用差示扫描量热法(DSC)研究它们的热稳定性。考虑到 DSC 筛选过程中发现的高热风险,特别选择了四羟基二硼(BBA)进行全面的安全表征。使用 DSC 与高级热动力学软件 (AKTS) 以及加速速率量热法 (ARC) 和差分加速速率量热法 (DARC) 进一步探讨了 BBA 的分解。对关键的安全参数进行了估算,如达到最大速率的时间为 24 小时的温度(TMR24 和 TD24)。各种方法得出的 TMR24 结果一致,证明了这些技术在动力学分析中的可靠性。DARC 和 ARC 测试显示,BBA 的热失控异常迅速,以至于无法在仪器的限制范围内跟踪自加热速率。此外,还发现 BBA 对冲击或摩擦不敏感。本研究介绍了 BBA 的一般方法和具体研究结果,旨在为行业提供指导,以便在工艺开发和放大过程中进行工艺安全评估并确保安全使用二硼试剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Stability of Tetrahydroxydiboron

Despite the widespread application of diboron reagents in Suzuki–Miyaura borylation reactions, the thermal stability of diboron compounds is poorly understood. Seven commonly used diboron reagents were selected to investigate their thermal stability using Differential Scanning Calorimetry (DSC). Tetrahydroxydiboron (BBA) was specifically chosen for comprehensive safety characterization, considering the high thermal risk identified during the DSC screening. The decomposition of BBA was further explored using DSC in conjunction with Advanced Thermokinetics Software (AKTS), as well as Accelerating Rate Calorimetry (ARC) and Differential Accelerating Rate Calorimetry (DARC). Key safety parameters, such as the temperature at which the time to the maximum rate is 24 h (TMR24 and TD24), were estimated. Consistent results for TMR24 were obtained across various methods, affirming the reliability of these techniques in the kinetic analysis. DARC and ARC testing reveal an exceptionally rapid thermal runaway for BBA to the extent that the self-heating rate cannot be tracked within the instrument’s limits. Furthermore, BBA was found to be insensitive to impact or friction. This study presents the general methodology and specific findings for BBA, with the aim of providing industry guidance for conducting process safety assessment and ensuring the safe utilization of diboron reagents during process development and scale-up.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Derisking Crystallization Process Development and Scale-Up Using a Complementary, “Quick and Dirty” Digital Design Catalytic Activity of Triphenylphosphine for Electrophilic Aromatic Bromination Using N-Bromosuccinimide and Process Safety Evaluation Organozinc Reagents: Highly Efficient Scalable Continuous Conversion in Various Concentrations and Reaction Types Synthesis of Enantiopure Fluoropiperidines via Biocatalytic Desymmetrization and Flow Photochemical Decarboxylative Fluorination Economic, One-Pot Synthesis of Diethyl Furoxan Dicarboxylate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1