{"title":"亚导状态增加了 Piezo1 门控模型的复杂性。","authors":"Marie E. Cronin , Jörg Grandl","doi":"10.1016/j.tibs.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>Piezos are force-gated ion channels that detect and communicate membrane tension to the cell. Recent work from <span>Ullah, Nosyreva</span><svg><path></path></svg>, and colleagues characterizes partial channel openings, known as subconductance states, and develops a new gating model of Piezo1 function.</p></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 7","pages":"Pages 567-568"},"PeriodicalIF":11.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subconductance states add complexity to Piezo1 gating model\",\"authors\":\"Marie E. Cronin , Jörg Grandl\",\"doi\":\"10.1016/j.tibs.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Piezos are force-gated ion channels that detect and communicate membrane tension to the cell. Recent work from <span>Ullah, Nosyreva</span><svg><path></path></svg>, and colleagues characterizes partial channel openings, known as subconductance states, and develops a new gating model of Piezo1 function.</p></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"49 7\",\"pages\":\"Pages 567-568\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968000424001300\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424001300","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Subconductance states add complexity to Piezo1 gating model
Piezos are force-gated ion channels that detect and communicate membrane tension to the cell. Recent work from Ullah, Nosyreva, and colleagues characterizes partial channel openings, known as subconductance states, and develops a new gating model of Piezo1 function.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.