由 CYP 450、转运体和蛋白质结合介导的雷马唑仑的药物相互作用潜力。

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current drug metabolism Pub Date : 2024-01-01 DOI:10.2174/0113892002300657240521094732
Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stöhr
{"title":"由 CYP 450、转运体和蛋白质结合介导的雷马唑仑的药物相互作用潜力。","authors":"Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stöhr","doi":"10.2174/0113892002300657240521094732","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The ultra-short-acting benzodiazepine, remimazolam, is a new treatment modality for procedural sedation and general anesthesia. Its activity is terminated by carboxylesterase 1 (CES1).</p><p><strong>Objective: </strong>The objective of this study was to determine the drug-drug interaction (DDI) potential of remimazolam through mechanisms unrelated to its metabolizing enzyme, CES1.</p><p><strong>Methods: </strong>Conventional in vitro co-exposure experiments were conducted to study possible interactions of remimazolam and its primary metabolite, CNS7054, mediated by competitive binding to plasma protein or reactions with cytochrome P450 isoforms or drug transporters.</p><p><strong>Results: </strong>No relevant interactions of remimazolam or its metabolite with cytochrome P450 (CYP) isoforms at clinically relevant concentrations were identified. Likewise, standard experiments revealed no clinically relevant interactions with drug transporters and plasma proteins.</p><p><strong>Conclusion: </strong>The present data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CYP isoforms, drug transporters, and protein binding.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"266-275"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug-Drug Interaction Potential of Remimazolam: CYP 450, Transporters, and Protein Binding.\",\"authors\":\"Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stöhr\",\"doi\":\"10.2174/0113892002300657240521094732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The ultra-short-acting benzodiazepine, remimazolam, is a new treatment modality for procedural sedation and general anesthesia. Its activity is terminated by carboxylesterase 1 (CES1).</p><p><strong>Objective: </strong>The objective of this study was to determine the drug-drug interaction (DDI) potential of remimazolam through mechanisms unrelated to its metabolizing enzyme, CES1.</p><p><strong>Methods: </strong>Conventional in vitro co-exposure experiments were conducted to study possible interactions of remimazolam and its primary metabolite, CNS7054, mediated by competitive binding to plasma protein or reactions with cytochrome P450 isoforms or drug transporters.</p><p><strong>Results: </strong>No relevant interactions of remimazolam or its metabolite with cytochrome P450 (CYP) isoforms at clinically relevant concentrations were identified. Likewise, standard experiments revealed no clinically relevant interactions with drug transporters and plasma proteins.</p><p><strong>Conclusion: </strong>The present data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CYP isoforms, drug transporters, and protein binding.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\" \",\"pages\":\"266-275\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892002300657240521094732\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002300657240521094732","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:超短效苯二氮卓--雷马唑仑是一种用于手术镇静和全身麻醉的新治疗方式。其活性被羧酸酯酶 1(CES1)终止:本研究旨在确定雷米马唑仑通过与其代谢酶 CES1 无关的机制产生药物间相互作用(DDI)的可能性:方法:进行常规体外共同暴露实验,研究雷马唑仑及其主要代谢物 CNS7054 可能通过与血浆蛋白竞争结合或与细胞色素 P450 同工酶或药物转运体竞争反应而产生的相互作用:结果:在临床相关浓度下,未发现雷马唑仑或其代谢物与细胞色素 P450 (CYP) 同工酶发生相关的相互作用。同样,标准实验也没有发现与药物转运体和血浆蛋白有临床相关的相互作用:目前的数据和分析表明,由 CYP 同工酶、药物转运体和蛋白质结合介导的雷马唑仑药代动力学 DDIs 可能性非常低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drug-Drug Interaction Potential of Remimazolam: CYP 450, Transporters, and Protein Binding.

Background: The ultra-short-acting benzodiazepine, remimazolam, is a new treatment modality for procedural sedation and general anesthesia. Its activity is terminated by carboxylesterase 1 (CES1).

Objective: The objective of this study was to determine the drug-drug interaction (DDI) potential of remimazolam through mechanisms unrelated to its metabolizing enzyme, CES1.

Methods: Conventional in vitro co-exposure experiments were conducted to study possible interactions of remimazolam and its primary metabolite, CNS7054, mediated by competitive binding to plasma protein or reactions with cytochrome P450 isoforms or drug transporters.

Results: No relevant interactions of remimazolam or its metabolite with cytochrome P450 (CYP) isoforms at clinically relevant concentrations were identified. Likewise, standard experiments revealed no clinically relevant interactions with drug transporters and plasma proteins.

Conclusion: The present data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CYP isoforms, drug transporters, and protein binding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
期刊最新文献
Application of UPLC-MS/MS to Study Cellular Pharmacokinetics of Seven Active Components of Cnidii Fructus Extracts. Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Unveiling the Interplay: Antioxidant Enzyme Polymorphisms and Oxidative Stress in Preterm Neonatal Renal and Hepatic Functions. Quality by Design Approach for the Development of Cariprazine Hydrochloride Loaded Lipid-Based Formulation for Brain Delivery via Intranasal Route. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1