Patricia M Davis, Eugene Ravkov, Martina de Geus, Zach Clauss, John Lee, Anh Tuan Nguyen, Marsha Hartmann, Jeffrey Kim, Tracy I George, Leo Lin, David P Ng
{"title":"通过流式细胞术,合成异常肥大细胞颗粒成功模拟了肿瘤肥大细胞。","authors":"Patricia M Davis, Eugene Ravkov, Martina de Geus, Zach Clauss, John Lee, Anh Tuan Nguyen, Marsha Hartmann, Jeffrey Kim, Tracy I George, Leo Lin, David P Ng","doi":"10.1002/cyto.b.22183","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical flow cytometry laboratories require quality control materials for assay development, validation, and performance monitoring, including new reagent lot qualification. However, finding suitable controls for populations with uncommonly expressed antigens or for rare populations, such as mast cells, can be difficult. To that end, we evaluated synthetic abnormal mast cell particles (SAMCP), developed together with, and manufactured by, Slingshot Biosciences. The SAMCP's were designed to phenotypically mimic abnormal neoplastic mast cells: they were customized to have the same light scatter and autofluorescence properties of mast cells, along with surface antigen levels of CD45, CD33, CD117, CD2, CD25, and CD30 consistent with that seen in mast cell disease. We evaluated several performance characteristics of these particles using ARUP's high sensitivity clinical mast cell assay, including limit of detection, off-target activity and FMO controls, precision, scatter properties of the particles utilizing several different cytometer platforms, and particle antigen stability. The phenotype of the SAMCP mimicked abnormal mast cells, and they could be distinguished from normal native mast cells. FMO controls demonstrated specificity of each of the markers, and no off-target binding was detected. The limit of detection of the particles spiked into normal bone marrow was found to be ≤0.003% in a limiting dilution assay. The mast cell particles were found to perform similarly on Becton Dickinson Lyric, Cytek Aurora, and Beckman Coulter Navios and CytoFLEX platforms. Within run and between run precision were less than 10% CV. SAMCP were stable up to 13 days with minimal loss of antigen fluorescence intensity. The SAMCP's were able to successfully mimic neoplastic mast cells based on the results of our high sensitivity mast cell flow cytometry panel. These synthetic cell particles represent an exciting and innovative technology, which can fulfill vital needs in clinical flow cytometry such as serving as standardized control materials for assay development and performance monitoring.</p>","PeriodicalId":10883,"journal":{"name":"Cytometry Part B: Clinical Cytometry","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic abnormal mast cell particles successfully mimic neoplastic mast cells by flow cytometry.\",\"authors\":\"Patricia M Davis, Eugene Ravkov, Martina de Geus, Zach Clauss, John Lee, Anh Tuan Nguyen, Marsha Hartmann, Jeffrey Kim, Tracy I George, Leo Lin, David P Ng\",\"doi\":\"10.1002/cyto.b.22183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical flow cytometry laboratories require quality control materials for assay development, validation, and performance monitoring, including new reagent lot qualification. However, finding suitable controls for populations with uncommonly expressed antigens or for rare populations, such as mast cells, can be difficult. To that end, we evaluated synthetic abnormal mast cell particles (SAMCP), developed together with, and manufactured by, Slingshot Biosciences. The SAMCP's were designed to phenotypically mimic abnormal neoplastic mast cells: they were customized to have the same light scatter and autofluorescence properties of mast cells, along with surface antigen levels of CD45, CD33, CD117, CD2, CD25, and CD30 consistent with that seen in mast cell disease. We evaluated several performance characteristics of these particles using ARUP's high sensitivity clinical mast cell assay, including limit of detection, off-target activity and FMO controls, precision, scatter properties of the particles utilizing several different cytometer platforms, and particle antigen stability. The phenotype of the SAMCP mimicked abnormal mast cells, and they could be distinguished from normal native mast cells. FMO controls demonstrated specificity of each of the markers, and no off-target binding was detected. The limit of detection of the particles spiked into normal bone marrow was found to be ≤0.003% in a limiting dilution assay. The mast cell particles were found to perform similarly on Becton Dickinson Lyric, Cytek Aurora, and Beckman Coulter Navios and CytoFLEX platforms. Within run and between run precision were less than 10% CV. SAMCP were stable up to 13 days with minimal loss of antigen fluorescence intensity. The SAMCP's were able to successfully mimic neoplastic mast cells based on the results of our high sensitivity mast cell flow cytometry panel. These synthetic cell particles represent an exciting and innovative technology, which can fulfill vital needs in clinical flow cytometry such as serving as standardized control materials for assay development and performance monitoring.</p>\",\"PeriodicalId\":10883,\"journal\":{\"name\":\"Cytometry Part B: Clinical Cytometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part B: Clinical Cytometry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cyto.b.22183\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part B: Clinical Cytometry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cyto.b.22183","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Clinical flow cytometry laboratories require quality control materials for assay development, validation, and performance monitoring, including new reagent lot qualification. However, finding suitable controls for populations with uncommonly expressed antigens or for rare populations, such as mast cells, can be difficult. To that end, we evaluated synthetic abnormal mast cell particles (SAMCP), developed together with, and manufactured by, Slingshot Biosciences. The SAMCP's were designed to phenotypically mimic abnormal neoplastic mast cells: they were customized to have the same light scatter and autofluorescence properties of mast cells, along with surface antigen levels of CD45, CD33, CD117, CD2, CD25, and CD30 consistent with that seen in mast cell disease. We evaluated several performance characteristics of these particles using ARUP's high sensitivity clinical mast cell assay, including limit of detection, off-target activity and FMO controls, precision, scatter properties of the particles utilizing several different cytometer platforms, and particle antigen stability. The phenotype of the SAMCP mimicked abnormal mast cells, and they could be distinguished from normal native mast cells. FMO controls demonstrated specificity of each of the markers, and no off-target binding was detected. The limit of detection of the particles spiked into normal bone marrow was found to be ≤0.003% in a limiting dilution assay. The mast cell particles were found to perform similarly on Becton Dickinson Lyric, Cytek Aurora, and Beckman Coulter Navios and CytoFLEX platforms. Within run and between run precision were less than 10% CV. SAMCP were stable up to 13 days with minimal loss of antigen fluorescence intensity. The SAMCP's were able to successfully mimic neoplastic mast cells based on the results of our high sensitivity mast cell flow cytometry panel. These synthetic cell particles represent an exciting and innovative technology, which can fulfill vital needs in clinical flow cytometry such as serving as standardized control materials for assay development and performance monitoring.
期刊介绍:
Cytometry Part B: Clinical Cytometry features original research reports, in-depth reviews and special issues that directly relate to and palpably impact clinical flow, mass and image-based cytometry. These may include clinical and translational investigations important in the diagnostic, prognostic and therapeutic management of patients. Thus, we welcome research papers from various disciplines related [but not limited to] hematopathologists, hematologists, immunologists and cell biologists with clinically relevant and innovative studies investigating individual-cell analytics and/or separations. In addition to the types of papers indicated above, we also welcome Letters to the Editor, describing case reports or important medical or technical topics relevant to our readership without the length and depth of a full original report.