用自然语言对正确和错误的医学诊断进行解释性论证。

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Biomedical Semantics Pub Date : 2024-05-30 DOI:10.1186/s13326-024-00306-1
Benjamin Molinet, Santiago Marro, Elena Cabrio, Serena Villata
{"title":"用自然语言对正确和错误的医学诊断进行解释性论证。","authors":"Benjamin Molinet, Santiago Marro, Elena Cabrio, Serena Villata","doi":"10.1186/s13326-024-00306-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A huge amount of research is carried out nowadays in Artificial Intelligence to propose automated ways to analyse medical data with the aim to support doctors in delivering medical diagnoses. However, a main issue of these approaches is the lack of transparency and interpretability of the achieved results, making it hard to employ such methods for educational purposes. It is therefore necessary to develop new frameworks to enhance explainability in these solutions.</p><p><strong>Results: </strong>In this paper, we present a novel full pipeline to generate automatically natural language explanations for medical diagnoses. The proposed solution starts from a clinical case description associated with a list of correct and incorrect diagnoses and, through the extraction of the relevant symptoms and findings, enriches the information contained in the description with verified medical knowledge from an ontology. Finally, the system returns a pattern-based explanation in natural language which elucidates why the correct (incorrect) diagnosis is the correct (incorrect) one. The main contribution of the paper is twofold: first, we propose two novel linguistic resources for the medical domain (i.e, a dataset of 314 clinical cases annotated with the medical entities from UMLS, and a database of biological boundaries for common findings), and second, a full Information Extraction pipeline to extract symptoms and findings from the clinical cases and match them with the terms in a medical ontology and to the biological boundaries. An extensive evaluation of the proposed approach shows the our method outperforms comparable approaches.</p><p><strong>Conclusions: </strong>Our goal is to offer AI-assisted educational support framework to form clinical residents to formulate sound and exhaustive explanations for their diagnoses to patients.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"8"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138001/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explanatory argumentation in natural language for correct and incorrect medical diagnoses.\",\"authors\":\"Benjamin Molinet, Santiago Marro, Elena Cabrio, Serena Villata\",\"doi\":\"10.1186/s13326-024-00306-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A huge amount of research is carried out nowadays in Artificial Intelligence to propose automated ways to analyse medical data with the aim to support doctors in delivering medical diagnoses. However, a main issue of these approaches is the lack of transparency and interpretability of the achieved results, making it hard to employ such methods for educational purposes. It is therefore necessary to develop new frameworks to enhance explainability in these solutions.</p><p><strong>Results: </strong>In this paper, we present a novel full pipeline to generate automatically natural language explanations for medical diagnoses. The proposed solution starts from a clinical case description associated with a list of correct and incorrect diagnoses and, through the extraction of the relevant symptoms and findings, enriches the information contained in the description with verified medical knowledge from an ontology. Finally, the system returns a pattern-based explanation in natural language which elucidates why the correct (incorrect) diagnosis is the correct (incorrect) one. The main contribution of the paper is twofold: first, we propose two novel linguistic resources for the medical domain (i.e, a dataset of 314 clinical cases annotated with the medical entities from UMLS, and a database of biological boundaries for common findings), and second, a full Information Extraction pipeline to extract symptoms and findings from the clinical cases and match them with the terms in a medical ontology and to the biological boundaries. An extensive evaluation of the proposed approach shows the our method outperforms comparable approaches.</p><p><strong>Conclusions: </strong>Our goal is to offer AI-assisted educational support framework to form clinical residents to formulate sound and exhaustive explanations for their diagnoses to patients.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\"15 1\",\"pages\":\"8\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138001/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-024-00306-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-024-00306-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:如今,人工智能领域开展了大量研究,提出了自动分析医疗数据的方法,旨在为医生提供医疗诊断支持。然而,这些方法的一个主要问题是所取得的结果缺乏透明度和可解释性,因此很难将这些方法用于教育目的。因此,有必要开发新的框架来提高这些解决方案的可解释性:在本文中,我们提出了一个新颖的完整管道,用于自动生成医学诊断的自然语言解释。所提出的解决方案从与正确和错误诊断列表相关联的临床病例描述开始,通过提取相关症状和检查结果,用本体论中经过验证的医学知识丰富描述中包含的信息。最后,系统用自然语言返回基于模式的解释,阐明正确(错误)诊断的原因。本文的主要贡献有两个方面:首先,我们为医学领域提出了两个新颖的语言资源(即一个由 314 个临床病例组成的数据集,其中注有来自 UMLS 的医学实体,以及一个关于常见检查结果的生物边界数据库);其次,我们提出了一个完整的信息提取管道,用于从临床病例中提取症状和检查结果,并将其与医学本体中的术语和生物边界相匹配。对所提方法的广泛评估表明,我们的方法优于同类方法:我们的目标是提供人工智能辅助教育支持框架,帮助临床住院医师为其对患者的诊断做出合理详尽的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explanatory argumentation in natural language for correct and incorrect medical diagnoses.

Background: A huge amount of research is carried out nowadays in Artificial Intelligence to propose automated ways to analyse medical data with the aim to support doctors in delivering medical diagnoses. However, a main issue of these approaches is the lack of transparency and interpretability of the achieved results, making it hard to employ such methods for educational purposes. It is therefore necessary to develop new frameworks to enhance explainability in these solutions.

Results: In this paper, we present a novel full pipeline to generate automatically natural language explanations for medical diagnoses. The proposed solution starts from a clinical case description associated with a list of correct and incorrect diagnoses and, through the extraction of the relevant symptoms and findings, enriches the information contained in the description with verified medical knowledge from an ontology. Finally, the system returns a pattern-based explanation in natural language which elucidates why the correct (incorrect) diagnosis is the correct (incorrect) one. The main contribution of the paper is twofold: first, we propose two novel linguistic resources for the medical domain (i.e, a dataset of 314 clinical cases annotated with the medical entities from UMLS, and a database of biological boundaries for common findings), and second, a full Information Extraction pipeline to extract symptoms and findings from the clinical cases and match them with the terms in a medical ontology and to the biological boundaries. An extensive evaluation of the proposed approach shows the our method outperforms comparable approaches.

Conclusions: Our goal is to offer AI-assisted educational support framework to form clinical residents to formulate sound and exhaustive explanations for their diagnoses to patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
期刊最新文献
Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI). MeSH2Matrix: combining MeSH keywords and machine learning for biomedical relation classification based on PubMed. Annotation of epilepsy clinic letters for natural language processing An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology. Concretizing plan specifications as realizables within the OBO foundry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1