使用 REDCap 临床数据互操作性服务模块高保真提取电子健康记录神经母细胞瘤治疗数据。

IF 3.3 Q2 ONCOLOGY JCO Clinical Cancer Informatics Pub Date : 2024-05-01 DOI:10.1200/CCI.24.00009
Brian Furner, Alex Cheng, Ami V Desai, Daniel J Benedetti, Debra L Friedman, Kirk D Wyatt, Michael Watkins, Samuel L Volchenboum, Susan L Cohn
{"title":"使用 REDCap 临床数据互操作性服务模块高保真提取电子健康记录神经母细胞瘤治疗数据。","authors":"Brian Furner, Alex Cheng, Ami V Desai, Daniel J Benedetti, Debra L Friedman, Kirk D Wyatt, Michael Watkins, Samuel L Volchenboum, Susan L Cohn","doi":"10.1200/CCI.24.00009","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Although the International Neuroblastoma Risk Group Data Commons (INRGdc) has enabled seminal large cohort studies, the research is limited by the lack of real-world, electronic health record (EHR) treatment data. To address this limitation, we evaluated the feasibility of extracting treatment data directly from EHRs using the REDCap Clinical Data Interoperability Services (CDIS) module for future submission to the INRGdc.</p><p><strong>Methods: </strong>Patients enrolled on the Children's Oncology Group neuroblastoma biology study ANBL00B1 (ClinicalTrials.gov identifier: NCT00904241) who received care at the University of Chicago (UChicago) or the Vanderbilt University Medical Center (VUMC) after the go-live dates for the Fast Healthcare Interoperability Resources (FHIR)-compliant EHRs were identified. Antineoplastic drug orders were extracted using the CDIS module. To validate the CDIS output, antineoplastic agents extracted through FHIR were compared with those queried through EHR relational databases (UChicago's Clinical Research Data Warehouse and VUMC's Epic Clarity database) and manual chart review.</p><p><strong>Results: </strong>The analytic cohort consisted of 41 patients at UChicago and 32 VUMC patients. Antineoplastic drug orders were identified in the extracted EHR records of 39 (95.1%) UChicago patients and 26 (81.3%) VUMC patients. Manual chart review confirmed that patients with missing (n = 8) or discontinued (n = 1) orders in the CDIS output did not receive antineoplastic agents during the timeframe of the study. More than 99% of the antineoplastic drug orders in the EHR relational databases were identified in the corresponding CDIS output.</p><p><strong>Conclusion: </strong>Our results demonstrate the feasibility of extracting EHR treatment data with high fidelity using HL7-FHIR via REDCap CDIS for future submission to the INRGdc.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"8 ","pages":"e2400009"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371086/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extracting Electronic Health Record Neuroblastoma Treatment Data With High Fidelity Using the REDCap Clinical Data Interoperability Services Module.\",\"authors\":\"Brian Furner, Alex Cheng, Ami V Desai, Daniel J Benedetti, Debra L Friedman, Kirk D Wyatt, Michael Watkins, Samuel L Volchenboum, Susan L Cohn\",\"doi\":\"10.1200/CCI.24.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Although the International Neuroblastoma Risk Group Data Commons (INRGdc) has enabled seminal large cohort studies, the research is limited by the lack of real-world, electronic health record (EHR) treatment data. To address this limitation, we evaluated the feasibility of extracting treatment data directly from EHRs using the REDCap Clinical Data Interoperability Services (CDIS) module for future submission to the INRGdc.</p><p><strong>Methods: </strong>Patients enrolled on the Children's Oncology Group neuroblastoma biology study ANBL00B1 (ClinicalTrials.gov identifier: NCT00904241) who received care at the University of Chicago (UChicago) or the Vanderbilt University Medical Center (VUMC) after the go-live dates for the Fast Healthcare Interoperability Resources (FHIR)-compliant EHRs were identified. Antineoplastic drug orders were extracted using the CDIS module. To validate the CDIS output, antineoplastic agents extracted through FHIR were compared with those queried through EHR relational databases (UChicago's Clinical Research Data Warehouse and VUMC's Epic Clarity database) and manual chart review.</p><p><strong>Results: </strong>The analytic cohort consisted of 41 patients at UChicago and 32 VUMC patients. Antineoplastic drug orders were identified in the extracted EHR records of 39 (95.1%) UChicago patients and 26 (81.3%) VUMC patients. Manual chart review confirmed that patients with missing (n = 8) or discontinued (n = 1) orders in the CDIS output did not receive antineoplastic agents during the timeframe of the study. More than 99% of the antineoplastic drug orders in the EHR relational databases were identified in the corresponding CDIS output.</p><p><strong>Conclusion: </strong>Our results demonstrate the feasibility of extracting EHR treatment data with high fidelity using HL7-FHIR via REDCap CDIS for future submission to the INRGdc.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":\"8 \",\"pages\":\"e2400009\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371086/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.24.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:尽管国际神经母细胞瘤风险组数据公共共享平台(INRGdc)促成了开创性的大型队列研究,但由于缺乏真实世界的电子病历(EHR)治疗数据,这项研究受到了限制。为了解决这一局限性,我们评估了使用 REDCap 临床数据互操作性服务(CDIS)模块直接从电子病历中提取治疗数据的可行性,以便将来提交给 INRGdc:方法:确定参加儿童肿瘤学组神经母细胞瘤生物学研究 ANBL00B1(ClinicalTrials.gov 标识符:NCT00904241)的患者,这些患者在符合快速医疗互操作性资源(FHIR)标准的电子病历启用日期之后在芝加哥大学(UChicago)或范德堡大学医学中心(VUMC)接受治疗。使用 CDIS 模块提取抗肿瘤药物订单。为了验证 CDIS 的输出结果,将通过 FHIR 提取的抗肿瘤药物与通过 EHR 关系数据库(芝加哥大学临床研究数据仓库和 VUMC 的 Epic Clarity 数据库)和人工病历审查查询的抗肿瘤药物进行了比较:分析队列由芝加哥大学的 41 名患者和弗吉尼亚大学医学院的 32 名患者组成。在提取的 EHR 记录中,确定了 39 名(95.1%)芝加哥大学患者和 26 名(81.3%)弗吉尼亚大学医学院患者的抗肿瘤药物订单。人工病历审查证实,CDIS 输出中缺失(8 例)或中断(1 例)订单的患者在研究期间未接受抗肿瘤药物治疗。电子病历关系数据库中 99% 以上的抗肿瘤药物订单在相应的 CDIS 输出中得到了确认:我们的研究结果证明了使用 HL7-FHIR 通过 REDCap CDIS 高保真提取电子病历治疗数据的可行性,以便将来提交给 INRGdc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting Electronic Health Record Neuroblastoma Treatment Data With High Fidelity Using the REDCap Clinical Data Interoperability Services Module.

Purpose: Although the International Neuroblastoma Risk Group Data Commons (INRGdc) has enabled seminal large cohort studies, the research is limited by the lack of real-world, electronic health record (EHR) treatment data. To address this limitation, we evaluated the feasibility of extracting treatment data directly from EHRs using the REDCap Clinical Data Interoperability Services (CDIS) module for future submission to the INRGdc.

Methods: Patients enrolled on the Children's Oncology Group neuroblastoma biology study ANBL00B1 (ClinicalTrials.gov identifier: NCT00904241) who received care at the University of Chicago (UChicago) or the Vanderbilt University Medical Center (VUMC) after the go-live dates for the Fast Healthcare Interoperability Resources (FHIR)-compliant EHRs were identified. Antineoplastic drug orders were extracted using the CDIS module. To validate the CDIS output, antineoplastic agents extracted through FHIR were compared with those queried through EHR relational databases (UChicago's Clinical Research Data Warehouse and VUMC's Epic Clarity database) and manual chart review.

Results: The analytic cohort consisted of 41 patients at UChicago and 32 VUMC patients. Antineoplastic drug orders were identified in the extracted EHR records of 39 (95.1%) UChicago patients and 26 (81.3%) VUMC patients. Manual chart review confirmed that patients with missing (n = 8) or discontinued (n = 1) orders in the CDIS output did not receive antineoplastic agents during the timeframe of the study. More than 99% of the antineoplastic drug orders in the EHR relational databases were identified in the corresponding CDIS output.

Conclusion: Our results demonstrate the feasibility of extracting EHR treatment data with high fidelity using HL7-FHIR via REDCap CDIS for future submission to the INRGdc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
期刊最新文献
Development, Validation, and Clinical Utility of Electronic Patient-Reported Outcome Measure-Enhanced Prediction Models for Overall Survival in Patients With Advanced Non-Small Cell Lung Cancer Receiving Immunotherapy. Metastatic Versus Localized Disease as Inclusion Criteria That Can Be Automatically Extracted From Randomized Controlled Trials Using Natural Language Processing. Identifying Oncology Patients at High Risk for Potentially Preventable Emergency Department Visits Using a Novel Definition. Use of Patient-Reported Outcomes in Risk Prediction Model Development to Support Cancer Care Delivery: A Scoping Review. Optimizing End Points for Phase III Cancer Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1