{"title":"通过反转调节对多重免疫组化图像进行无监督污点分解","authors":"Shahira Abousamra, Danielle Fassler, Jiachen Yao, Rajarsi Gupta, Tahsin Kurc, Luisa Escobar-Hoyos, Dimitris Samaras, Kenneth Shroyer, Joel Saltz, Chao Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Multiplex Immunohistochemistry (mIHC) is a cost-effective and accessible method for in situ labeling of multiple protein biomarkers in a tissue sample. By assigning a different stain to each biomarker, it allows the visualization of different types of cells within the tumor vicinity for downstream analysis. However, to detect different types of stains in a given mIHC image is a challenging problem, especially when the number of stains is high. Previous deep-learning-based methods mostly assume full supervision; yet the annotation can be costly. In this paper, we propose a novel unsupervised stain decomposition method to detect different stains simultaneously. Our method does not require any supervision, except for color samples of different stains. A main technical challenge is that the problem is underdetermined and can have multiple solutions. To conquer this issue, we propose a novel inversion regulation technique, which eliminates most undesirable solutions. On a 7-plexed IHC images dataset, the proposed method achieves high quality stain decomposition results without human annotation.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"227 ","pages":"74-94"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138139/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Stain Decomposition via Inversion Regulation for Multiplex Immunohistochemistry Images.\",\"authors\":\"Shahira Abousamra, Danielle Fassler, Jiachen Yao, Rajarsi Gupta, Tahsin Kurc, Luisa Escobar-Hoyos, Dimitris Samaras, Kenneth Shroyer, Joel Saltz, Chao Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiplex Immunohistochemistry (mIHC) is a cost-effective and accessible method for in situ labeling of multiple protein biomarkers in a tissue sample. By assigning a different stain to each biomarker, it allows the visualization of different types of cells within the tumor vicinity for downstream analysis. However, to detect different types of stains in a given mIHC image is a challenging problem, especially when the number of stains is high. Previous deep-learning-based methods mostly assume full supervision; yet the annotation can be costly. In this paper, we propose a novel unsupervised stain decomposition method to detect different stains simultaneously. Our method does not require any supervision, except for color samples of different stains. A main technical challenge is that the problem is underdetermined and can have multiple solutions. To conquer this issue, we propose a novel inversion regulation technique, which eliminates most undesirable solutions. On a 7-plexed IHC images dataset, the proposed method achieves high quality stain decomposition results without human annotation.</p>\",\"PeriodicalId\":74504,\"journal\":{\"name\":\"Proceedings of machine learning research\",\"volume\":\"227 \",\"pages\":\"74-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138139/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised Stain Decomposition via Inversion Regulation for Multiplex Immunohistochemistry Images.
Multiplex Immunohistochemistry (mIHC) is a cost-effective and accessible method for in situ labeling of multiple protein biomarkers in a tissue sample. By assigning a different stain to each biomarker, it allows the visualization of different types of cells within the tumor vicinity for downstream analysis. However, to detect different types of stains in a given mIHC image is a challenging problem, especially when the number of stains is high. Previous deep-learning-based methods mostly assume full supervision; yet the annotation can be costly. In this paper, we propose a novel unsupervised stain decomposition method to detect different stains simultaneously. Our method does not require any supervision, except for color samples of different stains. A main technical challenge is that the problem is underdetermined and can have multiple solutions. To conquer this issue, we propose a novel inversion regulation technique, which eliminates most undesirable solutions. On a 7-plexed IHC images dataset, the proposed method achieves high quality stain decomposition results without human annotation.