Alexander V. Sirotkin , Zuzana Fabová , Barbora Loncová , Kristína Popovičová , Miroslav Bauer , Maroua Jalouli , Abdel Halim Harrath
{"title":"microRNA miR-152 可减轻和预防苯对猪卵巢细胞的毒性作用。","authors":"Alexander V. Sirotkin , Zuzana Fabová , Barbora Loncová , Kristína Popovičová , Miroslav Bauer , Maroua Jalouli , Abdel Halim Harrath","doi":"10.1016/j.tiv.2024.105855","DOIUrl":null,"url":null,"abstract":"<div><p>Epigenetic methods to prevent the reproductive toxicity of oil-related environmental contaminants are currently unavailable. The present study aimed to examine the ability of the microRNA miR-152 to mitigate the effects of benzene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without benzene (0, 10 and 100 ng/ml). The expression of miR-152; viability; proliferation (cell proliferation and expression of mRNAs and accumulation of PCNA and cyclin B1); apoptosis (expression of mRNAs and accumulation of bax and caspase 3; and the proportion of cells with fragmented DNA); and release of progesterone, estradiol and IGF-I were analyzed via RT–qPCR; the Trypan blue exclusion test; quantitative immunocytochemistry; BrdU; XTT; TUNEL assays; and ELISA.</p><p>Administration of benzene promoted the expression of apoptosis markers and reduced cell viability, all measured markers of proliferation, the release of steroid hormones and IGF-I. Overexpression of miR-152 was associated with increased cell viability, proliferation, progesterone and IGF-I release and reduced apoptosis and estradiol output. Moreover, miR-152 mitigated or prevented the effects of benzene on all the measured parameters in addition to estradiol release.</p><p>The present observations suggest the toxic effect of benzene and the stimulatory influence of miR-152 on ovarian cell functions. Moreover, this is the first demonstration of the ability of miRNAs to mitigate and prevent the reproductive toxicity of benzene.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105855"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The microRNA miR-152 can mitigate and prevent the toxic effect of benzene on porcine ovarian cells\",\"authors\":\"Alexander V. Sirotkin , Zuzana Fabová , Barbora Loncová , Kristína Popovičová , Miroslav Bauer , Maroua Jalouli , Abdel Halim Harrath\",\"doi\":\"10.1016/j.tiv.2024.105855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epigenetic methods to prevent the reproductive toxicity of oil-related environmental contaminants are currently unavailable. The present study aimed to examine the ability of the microRNA miR-152 to mitigate the effects of benzene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without benzene (0, 10 and 100 ng/ml). The expression of miR-152; viability; proliferation (cell proliferation and expression of mRNAs and accumulation of PCNA and cyclin B1); apoptosis (expression of mRNAs and accumulation of bax and caspase 3; and the proportion of cells with fragmented DNA); and release of progesterone, estradiol and IGF-I were analyzed via RT–qPCR; the Trypan blue exclusion test; quantitative immunocytochemistry; BrdU; XTT; TUNEL assays; and ELISA.</p><p>Administration of benzene promoted the expression of apoptosis markers and reduced cell viability, all measured markers of proliferation, the release of steroid hormones and IGF-I. Overexpression of miR-152 was associated with increased cell viability, proliferation, progesterone and IGF-I release and reduced apoptosis and estradiol output. Moreover, miR-152 mitigated or prevented the effects of benzene on all the measured parameters in addition to estradiol release.</p><p>The present observations suggest the toxic effect of benzene and the stimulatory influence of miR-152 on ovarian cell functions. Moreover, this is the first demonstration of the ability of miRNAs to mitigate and prevent the reproductive toxicity of benzene.</p></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"99 \",\"pages\":\"Article 105855\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233324000857\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324000857","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The microRNA miR-152 can mitigate and prevent the toxic effect of benzene on porcine ovarian cells
Epigenetic methods to prevent the reproductive toxicity of oil-related environmental contaminants are currently unavailable. The present study aimed to examine the ability of the microRNA miR-152 to mitigate the effects of benzene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without benzene (0, 10 and 100 ng/ml). The expression of miR-152; viability; proliferation (cell proliferation and expression of mRNAs and accumulation of PCNA and cyclin B1); apoptosis (expression of mRNAs and accumulation of bax and caspase 3; and the proportion of cells with fragmented DNA); and release of progesterone, estradiol and IGF-I were analyzed via RT–qPCR; the Trypan blue exclusion test; quantitative immunocytochemistry; BrdU; XTT; TUNEL assays; and ELISA.
Administration of benzene promoted the expression of apoptosis markers and reduced cell viability, all measured markers of proliferation, the release of steroid hormones and IGF-I. Overexpression of miR-152 was associated with increased cell viability, proliferation, progesterone and IGF-I release and reduced apoptosis and estradiol output. Moreover, miR-152 mitigated or prevented the effects of benzene on all the measured parameters in addition to estradiol release.
The present observations suggest the toxic effect of benzene and the stimulatory influence of miR-152 on ovarian cell functions. Moreover, this is the first demonstration of the ability of miRNAs to mitigate and prevent the reproductive toxicity of benzene.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.