TRIM33 通过调节 Irf8 和 Bcl2l11 的转录,在树突状细胞分化和稳态中发挥着关键作用。

IF 21.8 1区 医学 Q1 IMMUNOLOGY Cellular &Molecular Immunology Pub Date : 2024-05-31 DOI:10.1038/s41423-024-01179-1
Xiangyi Shen, Xiaoguang Li, Tao Wu, Tingting Guo, Jiaoyan Lv, Zhimin He, Maocai Luo, Xinyi Zhu, Yujie Tian, Wenlong Lai, Chen Dong, Xiaoyu Hu, Li Wu
{"title":"TRIM33 通过调节 Irf8 和 Bcl2l11 的转录,在树突状细胞分化和稳态中发挥着关键作用。","authors":"Xiangyi Shen, Xiaoguang Li, Tao Wu, Tingting Guo, Jiaoyan Lv, Zhimin He, Maocai Luo, Xinyi Zhu, Yujie Tian, Wenlong Lai, Chen Dong, Xiaoyu Hu, Li Wu","doi":"10.1038/s41423-024-01179-1","DOIUrl":null,"url":null,"abstract":"The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 7","pages":"752-769"},"PeriodicalIF":21.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214632/pdf/","citationCount":"0","resultStr":"{\"title\":\"TRIM33 plays a critical role in regulating dendritic cell differentiation and homeostasis by modulating Irf8 and Bcl2l11 transcription\",\"authors\":\"Xiangyi Shen, Xiaoguang Li, Tao Wu, Tingting Guo, Jiaoyan Lv, Zhimin He, Maocai Luo, Xinyi Zhu, Yujie Tian, Wenlong Lai, Chen Dong, Xiaoyu Hu, Li Wu\",\"doi\":\"10.1038/s41423-024-01179-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.\",\"PeriodicalId\":9950,\"journal\":{\"name\":\"Cellular &Molecular Immunology\",\"volume\":\"21 7\",\"pages\":\"752-769\"},\"PeriodicalIF\":21.8000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular &Molecular Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41423-024-01179-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular &Molecular Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41423-024-01179-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

不同树突状细胞(DC)亚群,即质体 DC(pDCs)和传统 DC 亚群(cDC1s 和 cDC2s)的发育受特定转录因子的控制。IRF8对cDC1s的命运分化至关重要。然而,Irf8 的表达是如何被调控的还不完全清楚。在这项研究中,我们发现 TRIM33 是 DC 分化和维持的关键调控因子。在Trim33fl/fl Cre-ERT2小鼠中缺失TRIM33会显著影响造血祖细胞在不同发育阶段的DC分化。TRIM33的缺失下调了这些祖细胞中与DC分化相关的多个基因的表达。TRIM33 通过在 Irf8 基因位点维持足够的 CDK9 和 Ser2 磷酸化 RNA 聚合酶 II(S2 Pol II)水平,促进 Irf8 的转录,从而促进 cDC1s 的分化。此外,TRIM33 通过直接抑制 PU.1 介导的 Bcl2l11 转录,防止了 DCs 和祖细胞的凋亡,从而维持了 DC 的稳态。综上所述,我们的研究结果表明,TRIM33 是通过调节 Irf8 和 Bcl2l11 的表达来调节直流分化和维持的一种新的关键调控因子。TRIM33是直流分化和存活的关键调节因子,这一发现为设计基于直流的免疫干预和疗法提供了潜在的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TRIM33 plays a critical role in regulating dendritic cell differentiation and homeostasis by modulating Irf8 and Bcl2l11 transcription
The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
31.20
自引率
1.20%
发文量
903
审稿时长
1 months
期刊介绍: Cellular & Molecular Immunology, a monthly journal from the Chinese Society of Immunology and the University of Science and Technology of China, serves as a comprehensive platform covering both basic immunology research and clinical applications. The journal publishes a variety of article types, including Articles, Review Articles, Mini Reviews, and Short Communications, focusing on diverse aspects of cellular and molecular immunology.
期刊最新文献
Gasdermin D unlocks metabolic pathways to enhance tissue regeneration. Metabolic rewiring controlled by HIF-1α tunes IgA-producing B-cell differentiation and intestinal inflammation. Alternative mRNA polyadenylation regulates macrophage hyperactivation via the autophagy pathway. Critical and differential roles of eIF4A1 and eIF4A2 in B-cell development and function. Targeting of TAMs: can we be more clever than cancer cells?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1