细菌有机磷循环的新见解:从人类病原体到环境细菌

Advances in microbial physiology Pub Date : 2024-01-01 Epub Date: 2024-03-06 DOI:10.1016/bs.ampbs.2023.12.003
Ian D E A Lidbury, Andrew Hitchcock, Sophie R M Groenhof, Alex N Connolly, Laila Moushtaq
{"title":"细菌有机磷循环的新见解:从人类病原体到环境细菌","authors":"Ian D E A Lidbury, Andrew Hitchcock, Sophie R M Groenhof, Alex N Connolly, Laila Moushtaq","doi":"10.1016/bs.ampbs.2023.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.</p>","PeriodicalId":519928,"journal":{"name":"Advances in microbial physiology","volume":"84 ","pages":"1-49"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria.\",\"authors\":\"Ian D E A Lidbury, Andrew Hitchcock, Sophie R M Groenhof, Alex N Connolly, Laila Moushtaq\",\"doi\":\"10.1016/bs.ampbs.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.</p>\",\"PeriodicalId\":519928,\"journal\":{\"name\":\"Advances in microbial physiology\",\"volume\":\"84 \",\"pages\":\"1-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in microbial physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ampbs.2023.12.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in microbial physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2023.12.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在陆地和水生生态系统中,磷(P)的供应控制着初级生产,并对气候调节和全球粮食安全产生影响。了解微生物对全球磷循环的控制,是最大限度地减少对不可再生磷酸盐岩储量的依赖和减少与过量使用磷肥有关的污染的先决条件。75 年前,通过研究人类致病菌与宿主之间的相互作用,微生物开始了对 P 循环的研究。固定有机碳占总碳库的很大一部分。因此,微生物进化出了大量的机制,将这部分有机磷转化为可移动的无机磷酸盐,而无机磷酸盐是众多生物分子的基石。基因组学时代 "揭示了环境中有机磷循环基因的非凡多样性,而 "回到实验室 "的研究正在确定这种多样性与功能之间的关系。通过这种综合方法,发现了许多迄今未知的参与微生物 P 循环的基因和蛋白质。这些基本发现不仅推动了我们的知识前沿,而且一些实例还为生物技术提供了令人兴奋的机遇,并为改善我们在本地和全球范围内种植食物的可持续性提供了可能的解决方案。在这篇综述中,我们将全面概述细菌的有机磷循环,包括对人类病原体的研究,以及这些知识如何为环境微生物学的新发现提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria.

In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protists: Eukaryotic single-celled organisms and the functioning of their organelles. The formate-hydrogen axis and its impact on the physiology of enterobacterial fermentation. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Microbial metabolites as modulators of host physiology. New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1