胆囊癌的多模型分析揭示了吸收 OxLDL 的中性粒细胞在促进肝脏侵袭中的作用。

IF 9.4 1区 医学 Q1 HEMATOLOGY Experimental Hematology & Oncology Pub Date : 2024-05-31 DOI:10.1186/s40164-024-00521-7
Dongning Rao, Jiaxin Li, Mao Zhang, Siyuan Huang, Lu Meng, Guohe Song, Jiaqiang Ma, Yingcheng Wu, Yifei Cheng, Shuyi Ji, Gaohua Wu, Lv Chen, Yuming Liu, Yang Shi, Jian Zhou, Fan Jia, Xiaoming Zhang, Ruibin Xi, Qiang Gao
{"title":"胆囊癌的多模型分析揭示了吸收 OxLDL 的中性粒细胞在促进肝脏侵袭中的作用。","authors":"Dongning Rao, Jiaxin Li, Mao Zhang, Siyuan Huang, Lu Meng, Guohe Song, Jiaqiang Ma, Yingcheng Wu, Yifei Cheng, Shuyi Ji, Gaohua Wu, Lv Chen, Yuming Liu, Yang Shi, Jian Zhou, Fan Jia, Xiaoming Zhang, Ruibin Xi, Qiang Gao","doi":"10.1186/s40164-024-00521-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gallbladder cancer (GBC) is the most common and lethal malignancy of the biliary tract that lacks effective therapy. In many GBC cases, infiltration into adjacent organs or distant metastasis happened long before the diagnosis, especially the direct liver invasion, which is the most common and unfavorable way of spreading.</p><p><strong>Methods: </strong>Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), proteomics, and multiplexed immunohistochemistry (mIHC) were performed on GBC across multiple tumor stages to characterize the tumor microenvironment (TME), focusing specifically on the preferential enrichment of neutrophils in GBC liver invasion (GBC-LI).</p><p><strong>Results: </strong>Multi-model Analysis reveals the immunosuppressive TME of GBC-LI that was characterized by the enrichment of neutrophils at the invasive front. We identified the context-dependent transcriptional states of neutrophils, with the Tumor-Modifying state being associated with oxidized low-density lipoprotein (oxLDL) metabolism. In vitro assays showed that the direct cell-cell contact between GBC cells and neutrophils led to the drastic increase in oxLDL uptake of neutrophils, which was primarily mediated by the elevated OLR1 on neutrophils. The oxLDL-absorbing neutrophils displayed a higher potential to promote tumor invasion while demonstrating lower cancer cytotoxicity. Finally, we identified a neutrophil-promoting niche at the invasive front of GBC-LI that constituted of KRT17<sup>+</sup> GBC cells, neutrophils, and surrounding fibroblasts, which may help cultivate the oxLDL-absorbing neutrophils.</p><p><strong>Conclusions: </strong>Our study reveals the existence of a subset of pro-tumoral neutrophils with a unique ability to absorb oxLDL via OLR1, a phenomenon induced through cell-cell contact with KRT17<sup>+</sup> GBC cells in GBC-LI.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"13 1","pages":"58"},"PeriodicalIF":9.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-model analysis of gallbladder cancer reveals the role of OxLDL-absorbing neutrophils in promoting liver invasion.\",\"authors\":\"Dongning Rao, Jiaxin Li, Mao Zhang, Siyuan Huang, Lu Meng, Guohe Song, Jiaqiang Ma, Yingcheng Wu, Yifei Cheng, Shuyi Ji, Gaohua Wu, Lv Chen, Yuming Liu, Yang Shi, Jian Zhou, Fan Jia, Xiaoming Zhang, Ruibin Xi, Qiang Gao\",\"doi\":\"10.1186/s40164-024-00521-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gallbladder cancer (GBC) is the most common and lethal malignancy of the biliary tract that lacks effective therapy. In many GBC cases, infiltration into adjacent organs or distant metastasis happened long before the diagnosis, especially the direct liver invasion, which is the most common and unfavorable way of spreading.</p><p><strong>Methods: </strong>Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), proteomics, and multiplexed immunohistochemistry (mIHC) were performed on GBC across multiple tumor stages to characterize the tumor microenvironment (TME), focusing specifically on the preferential enrichment of neutrophils in GBC liver invasion (GBC-LI).</p><p><strong>Results: </strong>Multi-model Analysis reveals the immunosuppressive TME of GBC-LI that was characterized by the enrichment of neutrophils at the invasive front. We identified the context-dependent transcriptional states of neutrophils, with the Tumor-Modifying state being associated with oxidized low-density lipoprotein (oxLDL) metabolism. In vitro assays showed that the direct cell-cell contact between GBC cells and neutrophils led to the drastic increase in oxLDL uptake of neutrophils, which was primarily mediated by the elevated OLR1 on neutrophils. The oxLDL-absorbing neutrophils displayed a higher potential to promote tumor invasion while demonstrating lower cancer cytotoxicity. Finally, we identified a neutrophil-promoting niche at the invasive front of GBC-LI that constituted of KRT17<sup>+</sup> GBC cells, neutrophils, and surrounding fibroblasts, which may help cultivate the oxLDL-absorbing neutrophils.</p><p><strong>Conclusions: </strong>Our study reveals the existence of a subset of pro-tumoral neutrophils with a unique ability to absorb oxLDL via OLR1, a phenomenon induced through cell-cell contact with KRT17<sup>+</sup> GBC cells in GBC-LI.</p>\",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":\"13 1\",\"pages\":\"58\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-024-00521-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00521-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:胆囊癌(GBC)是胆道最常见的致命恶性肿瘤,目前尚缺乏有效的治疗方法。在许多胆囊癌病例中,邻近器官浸润或远处转移早在确诊前就已发生,尤其是肝脏直接侵犯,是最常见、最不利的扩散方式:方法:对多期GBC进行单细胞RNA测序(scRNA-seq)、空间转录组学(ST)、蛋白质组学和多重免疫组化(mIHC)研究,以描述肿瘤微环境(TME)的特征,特别关注中性粒细胞在GBC肝脏浸润(GBC-LI)中的优先富集:结果:多模型分析揭示了GBC-LI的免疫抑制性TME,其特点是中性粒细胞在侵袭前沿富集。我们确定了中性粒细胞的环境依赖性转录状态,其中肿瘤修饰状态与氧化低密度脂蛋白(oxLDL)代谢有关。体外实验表明,GBC细胞与中性粒细胞之间的直接细胞接触导致中性粒细胞对氧化低密度脂蛋白(oxLDL)的吸收急剧增加,这主要是由中性粒细胞上升高的OLR1介导的。吸收了 oxLDL 的中性粒细胞具有更高的促进肿瘤侵袭的潜力,同时显示出较低的癌症细胞毒性。最后,我们在GBC-LI的侵袭前沿发现了一个由KRT17+ GBC细胞、中性粒细胞和周围成纤维细胞组成的中性粒细胞促进龛位,这可能有助于培养吸收oxLDL的中性粒细胞:我们的研究揭示了亲肿瘤中性粒细胞亚群的存在,它们具有通过 OLR1 吸收 oxLDL 的独特能力,这种现象是通过与 GBC-LI 中 KRT17+ GBC 细胞的细胞接触而诱发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-model analysis of gallbladder cancer reveals the role of OxLDL-absorbing neutrophils in promoting liver invasion.

Background: Gallbladder cancer (GBC) is the most common and lethal malignancy of the biliary tract that lacks effective therapy. In many GBC cases, infiltration into adjacent organs or distant metastasis happened long before the diagnosis, especially the direct liver invasion, which is the most common and unfavorable way of spreading.

Methods: Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), proteomics, and multiplexed immunohistochemistry (mIHC) were performed on GBC across multiple tumor stages to characterize the tumor microenvironment (TME), focusing specifically on the preferential enrichment of neutrophils in GBC liver invasion (GBC-LI).

Results: Multi-model Analysis reveals the immunosuppressive TME of GBC-LI that was characterized by the enrichment of neutrophils at the invasive front. We identified the context-dependent transcriptional states of neutrophils, with the Tumor-Modifying state being associated with oxidized low-density lipoprotein (oxLDL) metabolism. In vitro assays showed that the direct cell-cell contact between GBC cells and neutrophils led to the drastic increase in oxLDL uptake of neutrophils, which was primarily mediated by the elevated OLR1 on neutrophils. The oxLDL-absorbing neutrophils displayed a higher potential to promote tumor invasion while demonstrating lower cancer cytotoxicity. Finally, we identified a neutrophil-promoting niche at the invasive front of GBC-LI that constituted of KRT17+ GBC cells, neutrophils, and surrounding fibroblasts, which may help cultivate the oxLDL-absorbing neutrophils.

Conclusions: Our study reveals the existence of a subset of pro-tumoral neutrophils with a unique ability to absorb oxLDL via OLR1, a phenomenon induced through cell-cell contact with KRT17+ GBC cells in GBC-LI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
期刊最新文献
Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. A non-conditioned bone marrow transplantation mouse model to study clonal hematopoiesis and myeloid malignancies. EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1