Bo Wang, Shanshan Zhang, Mengyi Chen, Ming Lei, Tian Gao, Wei Fan, Jincui Huang, Xiaolin Cao
{"title":"生物制药行业常见可见微粒的识别和根本原因分析。","authors":"Bo Wang, Shanshan Zhang, Mengyi Chen, Ming Lei, Tian Gao, Wei Fan, Jincui Huang, Xiaolin Cao","doi":"10.5731/pdajpst.2023.012894","DOIUrl":null,"url":null,"abstract":"<p><p>Visible particle is an important issue in the biopharmaceutical industry, and it may occur across all the stages in the life cycle of biologics. Upon the occurrence of visible particles, it is often necessary to conduct chemical identification and root cause analysis to safeguard the safety and efficacy of the biotherapeutic products. In this article, we present a number of typical particles and relevant root cause analysis in the categories of extrinsic, intrinsic, and inherent particles that are commonly encountered in the biopharma industry. In particular, the optical images of particles obtained both in situ and after isolation are provided, along with spectral and elemental information. The particle identification was carried out with multiple microscopic and microspectroscopic techniques, including stereo optical microscopy, Fourier-transform infrared microscopy, confocal Raman microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Both commercial and in-house spectral databases were used for comparison and identification. In addition to particle identification, we placed significant efforts on the root cause analysis of the addressed particles with the intention to provide a relatively whole picture of the particle-related issues and practical references to particle mitigation for our peers in the biopharmaceutical industry.</p>","PeriodicalId":19986,"journal":{"name":"PDA Journal of Pharmaceutical Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry.\",\"authors\":\"Bo Wang, Shanshan Zhang, Mengyi Chen, Ming Lei, Tian Gao, Wei Fan, Jincui Huang, Xiaolin Cao\",\"doi\":\"10.5731/pdajpst.2023.012894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visible particle is an important issue in the biopharmaceutical industry, and it may occur across all the stages in the life cycle of biologics. Upon the occurrence of visible particles, it is often necessary to conduct chemical identification and root cause analysis to safeguard the safety and efficacy of the biotherapeutic products. In this article, we present a number of typical particles and relevant root cause analysis in the categories of extrinsic, intrinsic, and inherent particles that are commonly encountered in the biopharma industry. In particular, the optical images of particles obtained both in situ and after isolation are provided, along with spectral and elemental information. The particle identification was carried out with multiple microscopic and microspectroscopic techniques, including stereo optical microscopy, Fourier-transform infrared microscopy, confocal Raman microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Both commercial and in-house spectral databases were used for comparison and identification. In addition to particle identification, we placed significant efforts on the root cause analysis of the addressed particles with the intention to provide a relatively whole picture of the particle-related issues and practical references to particle mitigation for our peers in the biopharmaceutical industry.</p>\",\"PeriodicalId\":19986,\"journal\":{\"name\":\"PDA Journal of Pharmaceutical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PDA Journal of Pharmaceutical Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5731/pdajpst.2023.012894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDA Journal of Pharmaceutical Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5731/pdajpst.2023.012894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
可见微粒是生物制药行业的一个重要问题,它可能出现在生物制剂生命周期的各个阶段。一旦出现可见微粒,往往需要进行化学鉴定和根本原因分析,以保障生物治疗产品的安全性和有效性。在本文中,我们将介绍生物制药行业中常见的外在颗粒、内在颗粒和固有颗粒等类别中的一些典型颗粒和相关的根本原因分析。我们特别提供了原位和分离后获得的颗粒光学图像,以及光谱和元素信息。粒子识别采用了多种显微镜和显微光谱技术,包括立体光学显微镜、傅立叶变换红外显微镜、共焦拉曼显微镜、扫描电子显微镜和能量色散 X 射线光谱仪。商业和内部光谱数据库都被用来进行比较和鉴定。除了粒子鉴定,我们还致力于对所处理的粒子进行根本原因分析,目的是为生物制药行业的同行提供与粒子相关问题的相对完整的信息,以及粒子缓解的实用参考。
Identification and Root Cause Analysis of the Visible Particles Commonly Encountered in the Biopharmaceutical Industry.
Visible particle is an important issue in the biopharmaceutical industry, and it may occur across all the stages in the life cycle of biologics. Upon the occurrence of visible particles, it is often necessary to conduct chemical identification and root cause analysis to safeguard the safety and efficacy of the biotherapeutic products. In this article, we present a number of typical particles and relevant root cause analysis in the categories of extrinsic, intrinsic, and inherent particles that are commonly encountered in the biopharma industry. In particular, the optical images of particles obtained both in situ and after isolation are provided, along with spectral and elemental information. The particle identification was carried out with multiple microscopic and microspectroscopic techniques, including stereo optical microscopy, Fourier-transform infrared microscopy, confocal Raman microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Both commercial and in-house spectral databases were used for comparison and identification. In addition to particle identification, we placed significant efforts on the root cause analysis of the addressed particles with the intention to provide a relatively whole picture of the particle-related issues and practical references to particle mitigation for our peers in the biopharmaceutical industry.