{"title":"用语言革新心脏病学:揭示大型语言模型在医学科学写作中的影响。","authors":"","doi":"10.1016/j.cjca.2024.05.022","DOIUrl":null,"url":null,"abstract":"<div><div>Large language models (LLMs) are a unique form of machine learning that facilitates inputs of unstructured text/numerical information for meaningful interpretation and prediction. Recently, LLMs have become commercialized, allowing the average person to access these incredibly powerful tools. Early adopters focused on LLM use in performing logical tasks, including—but not limited to—generating titles, identifying key words, summarizing text, initial editing of scientific work, improving statistical protocols, and performing statistical analysis. More recently, LLMs have been expanded to clinical practice and academia to perform higher cognitive and creative tasks. LLMs provide personalized assistance in learning, facilitate the management of electronic medical records, and offer valuable insights into clinical decision making in cardiology. They enhance patient education by explaining intricate medical conditions in lay terms, have a vast library of knowledge to help clinicians expedite administrative tasks, provide useful feedback regarding content of scientific writing, and assist in the peer-review process. Despite their impressive capabilities, LLMs are not without limitations. They are susceptible to generating incorrect or plagiarized content, face challenges in handling tasks without detailed prompts, and lack originality. These limitations underscore the importance of human oversight in using LLMs in medical science and clinical practice. As LLMs continue to evolve, addressing these challenges will be crucial in maximizing their potential benefits while mitigating risks. This review explores the functions, opportunities, and constraints of LLMs, with a focus on their impact on cardiology, illustrating both the transformative power and the boundaries of current technology in medicine.</div></div>","PeriodicalId":9555,"journal":{"name":"Canadian Journal of Cardiology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Cardiology With Words: Unveiling the Impact of Large Language Models in Medical Science Writing\",\"authors\":\"\",\"doi\":\"10.1016/j.cjca.2024.05.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large language models (LLMs) are a unique form of machine learning that facilitates inputs of unstructured text/numerical information for meaningful interpretation and prediction. Recently, LLMs have become commercialized, allowing the average person to access these incredibly powerful tools. Early adopters focused on LLM use in performing logical tasks, including—but not limited to—generating titles, identifying key words, summarizing text, initial editing of scientific work, improving statistical protocols, and performing statistical analysis. More recently, LLMs have been expanded to clinical practice and academia to perform higher cognitive and creative tasks. LLMs provide personalized assistance in learning, facilitate the management of electronic medical records, and offer valuable insights into clinical decision making in cardiology. They enhance patient education by explaining intricate medical conditions in lay terms, have a vast library of knowledge to help clinicians expedite administrative tasks, provide useful feedback regarding content of scientific writing, and assist in the peer-review process. Despite their impressive capabilities, LLMs are not without limitations. They are susceptible to generating incorrect or plagiarized content, face challenges in handling tasks without detailed prompts, and lack originality. These limitations underscore the importance of human oversight in using LLMs in medical science and clinical practice. As LLMs continue to evolve, addressing these challenges will be crucial in maximizing their potential benefits while mitigating risks. This review explores the functions, opportunities, and constraints of LLMs, with a focus on their impact on cardiology, illustrating both the transformative power and the boundaries of current technology in medicine.</div></div>\",\"PeriodicalId\":9555,\"journal\":{\"name\":\"Canadian Journal of Cardiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0828282X24004136\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0828282X24004136","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Revolutionizing Cardiology With Words: Unveiling the Impact of Large Language Models in Medical Science Writing
Large language models (LLMs) are a unique form of machine learning that facilitates inputs of unstructured text/numerical information for meaningful interpretation and prediction. Recently, LLMs have become commercialized, allowing the average person to access these incredibly powerful tools. Early adopters focused on LLM use in performing logical tasks, including—but not limited to—generating titles, identifying key words, summarizing text, initial editing of scientific work, improving statistical protocols, and performing statistical analysis. More recently, LLMs have been expanded to clinical practice and academia to perform higher cognitive and creative tasks. LLMs provide personalized assistance in learning, facilitate the management of electronic medical records, and offer valuable insights into clinical decision making in cardiology. They enhance patient education by explaining intricate medical conditions in lay terms, have a vast library of knowledge to help clinicians expedite administrative tasks, provide useful feedback regarding content of scientific writing, and assist in the peer-review process. Despite their impressive capabilities, LLMs are not without limitations. They are susceptible to generating incorrect or plagiarized content, face challenges in handling tasks without detailed prompts, and lack originality. These limitations underscore the importance of human oversight in using LLMs in medical science and clinical practice. As LLMs continue to evolve, addressing these challenges will be crucial in maximizing their potential benefits while mitigating risks. This review explores the functions, opportunities, and constraints of LLMs, with a focus on their impact on cardiology, illustrating both the transformative power and the boundaries of current technology in medicine.
期刊介绍:
The Canadian Journal of Cardiology (CJC) is the official journal of the Canadian Cardiovascular Society (CCS). The CJC is a vehicle for the international dissemination of new knowledge in cardiology and cardiovascular science, particularly serving as the major venue for Canadian cardiovascular medicine.