{"title":"TRP 通道与安诺他敏之间的相互作用","authors":"Yasunori Takayama , Makoto Tominaga","doi":"10.1016/j.ceca.2024.102912","DOIUrl":null,"url":null,"abstract":"<div><p>Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"121 ","pages":"Article 102912"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0143416024000708/pdfft?md5=788b6fadfdeccc734c7d3f862606fd84&pid=1-s2.0-S0143416024000708-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Interaction between TRP channels and anoctamins\",\"authors\":\"Yasunori Takayama , Makoto Tominaga\",\"doi\":\"10.1016/j.ceca.2024.102912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.</p></div>\",\"PeriodicalId\":9678,\"journal\":{\"name\":\"Cell calcium\",\"volume\":\"121 \",\"pages\":\"Article 102912\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0143416024000708/pdfft?md5=788b6fadfdeccc734c7d3f862606fd84&pid=1-s2.0-S0143416024000708-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell calcium\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143416024000708\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000708","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes