Elahe Parvizi, Andy Bachler, Andreas Zwick, Tom K Walsh, Craig Moritz, Angela McGaughran
{"title":"博物馆的历史样本揭示了一种农业害蛾在不断变化的杀虫剂使用情况下的选择和漂移信号。","authors":"Elahe Parvizi, Andy Bachler, Andreas Zwick, Tom K Walsh, Craig Moritz, Angela McGaughran","doi":"10.1093/jeb/voae068","DOIUrl":null,"url":null,"abstract":"<p><p>In response to environmental and human-imposed selective pressures, agroecosystem pests frequently undergo rapid evolution, with some species having a remarkable capacity to rapidly develop pesticide resistance. Temporal sampling of genomic data can comprehensively capture such adaptive changes over time, for example, by elucidating allele frequency shifts in pesticide resistance loci in response to different pesticides. Here, we leveraged museum specimens spanning over a century of collections to generate temporal contrasts between pre- and post-insecticide populations of an agricultural pest moth, Helicoverpa armigera. We used targeted exon sequencing of 254 samples collected across Australia from the pre-1950s (prior to insecticide introduction) to the 1990s, encompassing decades of changing insecticide use. Our sequencing approach focused on genes that are known to be involved in insecticide resistance, environmental sensation, and stress tolerance. We found an overall lack of spatial and temporal population structure change across Australia. In some decades (e.g., 1960s and 1970s), we found a moderate reduction of genetic diversity, implying stochasticity in evolutionary trajectories due to genetic drift. Temporal genome scans showed extensive evidence of selection following insecticide use, although the majority of selected variants were low impact. Finally, alternating trajectories of allele frequency change were suggestive of potential antagonistic pleiotropy. Our results provide new insights into recent evolutionary responses in an agricultural pest and show how temporal contrasts using museum specimens can improve mechanistic understanding of rapid evolution.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"967-977"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Historical museum samples reveal signals of selection and drift in response to changing insecticide use in an agricultural pest moth.\",\"authors\":\"Elahe Parvizi, Andy Bachler, Andreas Zwick, Tom K Walsh, Craig Moritz, Angela McGaughran\",\"doi\":\"10.1093/jeb/voae068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to environmental and human-imposed selective pressures, agroecosystem pests frequently undergo rapid evolution, with some species having a remarkable capacity to rapidly develop pesticide resistance. Temporal sampling of genomic data can comprehensively capture such adaptive changes over time, for example, by elucidating allele frequency shifts in pesticide resistance loci in response to different pesticides. Here, we leveraged museum specimens spanning over a century of collections to generate temporal contrasts between pre- and post-insecticide populations of an agricultural pest moth, Helicoverpa armigera. We used targeted exon sequencing of 254 samples collected across Australia from the pre-1950s (prior to insecticide introduction) to the 1990s, encompassing decades of changing insecticide use. Our sequencing approach focused on genes that are known to be involved in insecticide resistance, environmental sensation, and stress tolerance. We found an overall lack of spatial and temporal population structure change across Australia. In some decades (e.g., 1960s and 1970s), we found a moderate reduction of genetic diversity, implying stochasticity in evolutionary trajectories due to genetic drift. Temporal genome scans showed extensive evidence of selection following insecticide use, although the majority of selected variants were low impact. Finally, alternating trajectories of allele frequency change were suggestive of potential antagonistic pleiotropy. Our results provide new insights into recent evolutionary responses in an agricultural pest and show how temporal contrasts using museum specimens can improve mechanistic understanding of rapid evolution.</p>\",\"PeriodicalId\":50198,\"journal\":{\"name\":\"Journal of Evolutionary Biology\",\"volume\":\" \",\"pages\":\"967-977\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jeb/voae068\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Historical museum samples reveal signals of selection and drift in response to changing insecticide use in an agricultural pest moth.
In response to environmental and human-imposed selective pressures, agroecosystem pests frequently undergo rapid evolution, with some species having a remarkable capacity to rapidly develop pesticide resistance. Temporal sampling of genomic data can comprehensively capture such adaptive changes over time, for example, by elucidating allele frequency shifts in pesticide resistance loci in response to different pesticides. Here, we leveraged museum specimens spanning over a century of collections to generate temporal contrasts between pre- and post-insecticide populations of an agricultural pest moth, Helicoverpa armigera. We used targeted exon sequencing of 254 samples collected across Australia from the pre-1950s (prior to insecticide introduction) to the 1990s, encompassing decades of changing insecticide use. Our sequencing approach focused on genes that are known to be involved in insecticide resistance, environmental sensation, and stress tolerance. We found an overall lack of spatial and temporal population structure change across Australia. In some decades (e.g., 1960s and 1970s), we found a moderate reduction of genetic diversity, implying stochasticity in evolutionary trajectories due to genetic drift. Temporal genome scans showed extensive evidence of selection following insecticide use, although the majority of selected variants were low impact. Finally, alternating trajectories of allele frequency change were suggestive of potential antagonistic pleiotropy. Our results provide new insights into recent evolutionary responses in an agricultural pest and show how temporal contrasts using museum specimens can improve mechanistic understanding of rapid evolution.
期刊介绍:
It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.