探索多组学液体活检测试在肺癌临床环境中的潜力。

IF 1.2 4区 医学 Q4 CELL BIOLOGY Cytopathology Pub Date : 2024-06-01 DOI:10.1111/cyt.13396
Andrea Gottardo, Tancredi Didier Bazan Russo, Alessandro Perez, Marco Bono, Emilia Di Giovanni, Enrico Di Marco, Rita Siino, Carla Ferrante Bannera, Clarissa Mujacic, Maria Concetta Vitale, Silvia Contino, Giuliana Iannì, Giulia Busuito, Federica Iacono, Lorena Incorvaia, Giuseppe Badalamenti, Antonio Galvano, Antonio Russo, Viviana Bazan, Valerio Gristina
{"title":"探索多组学液体活检测试在肺癌临床环境中的潜力。","authors":"Andrea Gottardo,&nbsp;Tancredi Didier Bazan Russo,&nbsp;Alessandro Perez,&nbsp;Marco Bono,&nbsp;Emilia Di Giovanni,&nbsp;Enrico Di Marco,&nbsp;Rita Siino,&nbsp;Carla Ferrante Bannera,&nbsp;Clarissa Mujacic,&nbsp;Maria Concetta Vitale,&nbsp;Silvia Contino,&nbsp;Giuliana Iannì,&nbsp;Giulia Busuito,&nbsp;Federica Iacono,&nbsp;Lorena Incorvaia,&nbsp;Giuseppe Badalamenti,&nbsp;Antonio Galvano,&nbsp;Antonio Russo,&nbsp;Viviana Bazan,&nbsp;Valerio Gristina","doi":"10.1111/cyt.13396","DOIUrl":null,"url":null,"abstract":"<p>The transformative role of artificial intelligence (AI) and multiomics could enhance the diagnostic and prognostic capabilities of liquid biopsy (LB) for lung cancer (LC). Despite advances, the transition from tissue biopsies to more sophisticated, non-invasive methods like LB has been impeded by challenges such as the heterogeneity of biomarkers and the low concentration of tumour-related analytes. The advent of multiomics – enabled by deep learning algorithms – offers a solution by allowing the simultaneous analysis of various analytes across multiple biological fluids, presenting a paradigm shift in cancer diagnostics. Through multi-marker, multi-analyte and multi-source approaches, this review showcases how AI and multiomics are identifying clinically valuable biomarker combinations that correlate with patients' health statuses. However, the path towards clinical implementation is fraught with challenges, including study reproducibility and lack of methodological standardization, thus necessitating urgent solutions to solve these common issues.</p>","PeriodicalId":55187,"journal":{"name":"Cytopathology","volume":"35 6","pages":"664-670"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of multiomics liquid biopsy testing in the clinical setting of lung cancer\",\"authors\":\"Andrea Gottardo,&nbsp;Tancredi Didier Bazan Russo,&nbsp;Alessandro Perez,&nbsp;Marco Bono,&nbsp;Emilia Di Giovanni,&nbsp;Enrico Di Marco,&nbsp;Rita Siino,&nbsp;Carla Ferrante Bannera,&nbsp;Clarissa Mujacic,&nbsp;Maria Concetta Vitale,&nbsp;Silvia Contino,&nbsp;Giuliana Iannì,&nbsp;Giulia Busuito,&nbsp;Federica Iacono,&nbsp;Lorena Incorvaia,&nbsp;Giuseppe Badalamenti,&nbsp;Antonio Galvano,&nbsp;Antonio Russo,&nbsp;Viviana Bazan,&nbsp;Valerio Gristina\",\"doi\":\"10.1111/cyt.13396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transformative role of artificial intelligence (AI) and multiomics could enhance the diagnostic and prognostic capabilities of liquid biopsy (LB) for lung cancer (LC). Despite advances, the transition from tissue biopsies to more sophisticated, non-invasive methods like LB has been impeded by challenges such as the heterogeneity of biomarkers and the low concentration of tumour-related analytes. The advent of multiomics – enabled by deep learning algorithms – offers a solution by allowing the simultaneous analysis of various analytes across multiple biological fluids, presenting a paradigm shift in cancer diagnostics. Through multi-marker, multi-analyte and multi-source approaches, this review showcases how AI and multiomics are identifying clinically valuable biomarker combinations that correlate with patients' health statuses. However, the path towards clinical implementation is fraught with challenges, including study reproducibility and lack of methodological standardization, thus necessitating urgent solutions to solve these common issues.</p>\",\"PeriodicalId\":55187,\"journal\":{\"name\":\"Cytopathology\",\"volume\":\"35 6\",\"pages\":\"664-670\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytopathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cyt.13396\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytopathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cyt.13396","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)和多组学的变革性作用可以提高肺癌液体活检(LB)的诊断和预后能力。尽管取得了进步,但从组织活检到更复杂的非侵入性方法(如液体活检)的过渡一直受到生物标记物异质性和肿瘤相关分析物浓度低等挑战的阻碍。由深度学习算法支持的多组学的出现提供了一种解决方案,它允许同时分析多种生物液体中的各种分析物,为癌症诊断带来了范式转变。本综述通过多标记、多分析物和多来源方法,展示了人工智能和多组学如何识别与患者健康状况相关的、具有临床价值的生物标记物组合。然而,临床实施的道路充满挑战,包括研究的可重复性和缺乏方法标准化,因此需要迫切的解决方案来解决这些常见问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the potential of multiomics liquid biopsy testing in the clinical setting of lung cancer

The transformative role of artificial intelligence (AI) and multiomics could enhance the diagnostic and prognostic capabilities of liquid biopsy (LB) for lung cancer (LC). Despite advances, the transition from tissue biopsies to more sophisticated, non-invasive methods like LB has been impeded by challenges such as the heterogeneity of biomarkers and the low concentration of tumour-related analytes. The advent of multiomics – enabled by deep learning algorithms – offers a solution by allowing the simultaneous analysis of various analytes across multiple biological fluids, presenting a paradigm shift in cancer diagnostics. Through multi-marker, multi-analyte and multi-source approaches, this review showcases how AI and multiomics are identifying clinically valuable biomarker combinations that correlate with patients' health statuses. However, the path towards clinical implementation is fraught with challenges, including study reproducibility and lack of methodological standardization, thus necessitating urgent solutions to solve these common issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytopathology
Cytopathology 生物-病理学
CiteScore
2.30
自引率
15.40%
发文量
107
审稿时长
6-12 weeks
期刊介绍: The aim of Cytopathology is to publish articles relating to those aspects of cytology which will increase our knowledge and understanding of the aetiology, diagnosis and management of human disease. It contains original articles and critical reviews on all aspects of clinical cytology in its broadest sense, including: gynaecological and non-gynaecological cytology; fine needle aspiration and screening strategy. Cytopathology welcomes papers and articles on: ultrastructural, histochemical and immunocytochemical studies of the cell; quantitative cytology and DNA hybridization as applied to cytological material.
期刊最新文献
Evaluation of Diagnostic Accuracy of the Paris System (TPS 2.0) in Urine Cytology Specimens: An Institutional Experience From a Large Cohort of a Tertiary Care Centre. Myoepithelial-Rich Pleomorphic Adenoma With Novel PLAG1 Inversion on Chromosome 8, and LRP1B, PBRM1 and TCF3 Mutations. Infantile Fibromatosis Colli: Cytological Diagnosis of a Rare Entity. Navigating the Diagnostic Challenges in Lymph Node Cytology: The Case of Reactive Hyperplasia. Plasmablastic Lymphoma in the Submandibular Region Diagnosed by FNAC: A Case Report and Literature Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1