{"title":"通过基于 Wald 的控制图检测非稳态过程中的间歇性故障","authors":"Yifan Liu, Yinghong Zhao, Ming Gao, Li Sheng","doi":"10.1002/acs.3852","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, the problem of intermittent fault (IF) detection is investigated for nonstationary processes in the multivariate statistics framework. By combining the moving window technique with maximum likelihood estimation (MLE), the moving window Wald-based control chart is proposed to realize the detection of IFs in nonstationary processes. The computational efficiency and the convergence properties are discussed for the designed iterative algorithm of MLE. Then, necessary and sufficient conditions are presented to guarantee the detectability of IFs with the consideration of window lengths. Moreover, the alarm delays are analyzed for the appearance and disappearance of IFs. In virtue of the above analysis, the optimal window length is derived by minimizing the supremum of alarm delays. In order to estimate the time of IFs' appearance and disappearance, an algorithm is designed with the inspiration of simulated annealing strategy. Finally, a simulation on rotary steerable drilling tool system is provided to verify the effectiveness of the proposed method.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 9","pages":"2952-2971"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermittent fault detection in nonstationary processes via a Wald-based control chart\",\"authors\":\"Yifan Liu, Yinghong Zhao, Ming Gao, Li Sheng\",\"doi\":\"10.1002/acs.3852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this article, the problem of intermittent fault (IF) detection is investigated for nonstationary processes in the multivariate statistics framework. By combining the moving window technique with maximum likelihood estimation (MLE), the moving window Wald-based control chart is proposed to realize the detection of IFs in nonstationary processes. The computational efficiency and the convergence properties are discussed for the designed iterative algorithm of MLE. Then, necessary and sufficient conditions are presented to guarantee the detectability of IFs with the consideration of window lengths. Moreover, the alarm delays are analyzed for the appearance and disappearance of IFs. In virtue of the above analysis, the optimal window length is derived by minimizing the supremum of alarm delays. In order to estimate the time of IFs' appearance and disappearance, an algorithm is designed with the inspiration of simulated annealing strategy. Finally, a simulation on rotary steerable drilling tool system is provided to verify the effectiveness of the proposed method.</p>\\n </div>\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"38 9\",\"pages\":\"2952-2971\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acs.3852\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3852","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Intermittent fault detection in nonstationary processes via a Wald-based control chart
In this article, the problem of intermittent fault (IF) detection is investigated for nonstationary processes in the multivariate statistics framework. By combining the moving window technique with maximum likelihood estimation (MLE), the moving window Wald-based control chart is proposed to realize the detection of IFs in nonstationary processes. The computational efficiency and the convergence properties are discussed for the designed iterative algorithm of MLE. Then, necessary and sufficient conditions are presented to guarantee the detectability of IFs with the consideration of window lengths. Moreover, the alarm delays are analyzed for the appearance and disappearance of IFs. In virtue of the above analysis, the optimal window length is derived by minimizing the supremum of alarm delays. In order to estimate the time of IFs' appearance and disappearance, an algorithm is designed with the inspiration of simulated annealing strategy. Finally, a simulation on rotary steerable drilling tool system is provided to verify the effectiveness of the proposed method.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.