利用 CHRCT 对厚硬顶薄煤层自成巷道进行动压控制的数值研究

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Energy Exploration & Exploitation Pub Date : 2024-05-29 DOI:10.1177/01445987241253626
Bosheng Hu, Yongping Wu, Yang Yu, Panshi Xie, Hu Wen, Hao Zhang
{"title":"利用 CHRCT 对厚硬顶薄煤层自成巷道进行动压控制的数值研究","authors":"Bosheng Hu, Yongping Wu, Yang Yu, Panshi Xie, Hu Wen, Hao Zhang","doi":"10.1177/01445987241253626","DOIUrl":null,"url":null,"abstract":"Close-hole roof-cutting technology (CHRCT, also called “dense drilling”) has been widely applied in coal mines due to its economic and safety benefits. Inappropriate cutting parameters and support schemes can lead to dynamic pressure disturbances in self-forming roadways with thick and hard roofs. Moreover, fully characterizing the procedure and process of self-forming roadways using CHRCT in the field is difficult, resulting in unconvincing results. Therefore, this study aims to fill the gaps in theoretical knowledge and methodology. First, the dynamic pressure characteristics of the self-forming roadway using CHRCT were investigated, and the dynamic pressure types of the roadway were classified. There are three main types: roof cut off along the coal wall side of, severe deformation, and overhanging roof of a roadway after the second working face mining. The effects of different hole parameters (inclination angle, depth and spacing) on the roof cutting to form a roadway were also investigated. The optimal hole inclination, depth and spacing of 15°, 8 m, and 200 mm were determined through a series of experiments. Then, three support schemes embedded in the roadway were compared in terms of stress evolution, bolt and cable axial forces, roof displacement, and structure. Finally, this study proposes a dynamic pressure mitigation strategy through the optimization of parameters for close-hole roof-cutting and support schemes, monitoring and controlling ground pressure in roadways, and taking auxiliary measures for pressure relief. The results show that this strategy can effectively eliminate the dynamic pressure of the roadway and meet the stability requirements of the full mining cycle. This paper presents a methodology for analysing CHRCT via numerical simulation. Moreover, this approach is of great theoretical and practical importance for dynamic pressure control for self-forming roadways using CHRCT in thin coal seams with thick and hard roofs.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on the dynamic pressure control for self-forming roadways using CHRCT in thin coal seams with thick and hard roofs\",\"authors\":\"Bosheng Hu, Yongping Wu, Yang Yu, Panshi Xie, Hu Wen, Hao Zhang\",\"doi\":\"10.1177/01445987241253626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Close-hole roof-cutting technology (CHRCT, also called “dense drilling”) has been widely applied in coal mines due to its economic and safety benefits. Inappropriate cutting parameters and support schemes can lead to dynamic pressure disturbances in self-forming roadways with thick and hard roofs. Moreover, fully characterizing the procedure and process of self-forming roadways using CHRCT in the field is difficult, resulting in unconvincing results. Therefore, this study aims to fill the gaps in theoretical knowledge and methodology. First, the dynamic pressure characteristics of the self-forming roadway using CHRCT were investigated, and the dynamic pressure types of the roadway were classified. There are three main types: roof cut off along the coal wall side of, severe deformation, and overhanging roof of a roadway after the second working face mining. The effects of different hole parameters (inclination angle, depth and spacing) on the roof cutting to form a roadway were also investigated. The optimal hole inclination, depth and spacing of 15°, 8 m, and 200 mm were determined through a series of experiments. Then, three support schemes embedded in the roadway were compared in terms of stress evolution, bolt and cable axial forces, roof displacement, and structure. Finally, this study proposes a dynamic pressure mitigation strategy through the optimization of parameters for close-hole roof-cutting and support schemes, monitoring and controlling ground pressure in roadways, and taking auxiliary measures for pressure relief. The results show that this strategy can effectively eliminate the dynamic pressure of the roadway and meet the stability requirements of the full mining cycle. This paper presents a methodology for analysing CHRCT via numerical simulation. Moreover, this approach is of great theoretical and practical importance for dynamic pressure control for self-forming roadways using CHRCT in thin coal seams with thick and hard roofs.\",\"PeriodicalId\":11606,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987241253626\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01445987241253626","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

近孔顶板切割技术(CHRCT,又称 "密集钻孔")因其经济和安全效益而被广泛应用于煤矿。不恰当的切削参数和支护方案会导致厚硬顶板自成巷道出现动压扰动。此外,在现场使用 CHRCT 对自成巷道的程序和过程进行全面描述非常困难,导致结果难以令人信服。因此,本研究旨在填补理论知识和方法上的空白。首先,研究了使用 CHRCT 自成巷道的动压特性,并对巷道的动压类型进行了分类。主要有三种类型:沿煤壁侧截顶、严重变形、第二工作面开采后巷道悬顶。此外,还研究了不同钻孔参数(倾角、深度和间距)对切顶形成巷道的影响。通过一系列实验,确定了 15°、8 米和 200 毫米的最佳钻孔倾角、深度和间距。然后,从应力演变、螺栓和缆索轴向力、顶板位移和结构等方面对嵌入巷道的三种支撑方案进行了比较。最后,本研究提出了一种动态压力缓解策略,即通过优化闭孔顶板切削参数和支护方案,监测和控制巷道地压,并采取辅助措施缓解压力。结果表明,该策略可有效消除巷道动压,满足全开采周期的稳定性要求。本文提出了一种通过数值模拟分析 CHRCT 的方法。此外,该方法对于在顶板厚且硬的薄煤层中使用 CHRCT 自成巷道的动压控制具有重要的理论和实践意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study on the dynamic pressure control for self-forming roadways using CHRCT in thin coal seams with thick and hard roofs
Close-hole roof-cutting technology (CHRCT, also called “dense drilling”) has been widely applied in coal mines due to its economic and safety benefits. Inappropriate cutting parameters and support schemes can lead to dynamic pressure disturbances in self-forming roadways with thick and hard roofs. Moreover, fully characterizing the procedure and process of self-forming roadways using CHRCT in the field is difficult, resulting in unconvincing results. Therefore, this study aims to fill the gaps in theoretical knowledge and methodology. First, the dynamic pressure characteristics of the self-forming roadway using CHRCT were investigated, and the dynamic pressure types of the roadway were classified. There are three main types: roof cut off along the coal wall side of, severe deformation, and overhanging roof of a roadway after the second working face mining. The effects of different hole parameters (inclination angle, depth and spacing) on the roof cutting to form a roadway were also investigated. The optimal hole inclination, depth and spacing of 15°, 8 m, and 200 mm were determined through a series of experiments. Then, three support schemes embedded in the roadway were compared in terms of stress evolution, bolt and cable axial forces, roof displacement, and structure. Finally, this study proposes a dynamic pressure mitigation strategy through the optimization of parameters for close-hole roof-cutting and support schemes, monitoring and controlling ground pressure in roadways, and taking auxiliary measures for pressure relief. The results show that this strategy can effectively eliminate the dynamic pressure of the roadway and meet the stability requirements of the full mining cycle. This paper presents a methodology for analysing CHRCT via numerical simulation. Moreover, this approach is of great theoretical and practical importance for dynamic pressure control for self-forming roadways using CHRCT in thin coal seams with thick and hard roofs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Exploration & Exploitation
Energy Exploration & Exploitation 工程技术-能源与燃料
CiteScore
5.40
自引率
3.70%
发文量
78
审稿时长
3.9 months
期刊介绍: Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.
期刊最新文献
Sustainable energy recovery from municipal solid wastes: An in-depth analysis of waste-to-energy technologies and their environmental implications in India Discussion on the production mechanism of deep coalbed methane in the eastern margin of the Ordos Basin Assessing the diffusion of photovoltaic technology and electric vehicles using system dynamics modeling Trihybrid nanofluid flow through nozzle of a rocket engine: Numerical solution and irreversibility analysis An advanced hybrid deep learning model for accurate energy load prediction in smart building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1