用于研究土基液化的土壤模型调查

IF 0.8 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Soil Mechanics and Foundation Engineering Pub Date : 2024-05-31 DOI:10.1007/s11204-024-09954-y
V. V. Sidorov, Duc Anh Le
{"title":"用于研究土基液化的土壤模型调查","authors":"V. V. Sidorov, Duc Anh Le","doi":"10.1007/s11204-024-09954-y","DOIUrl":null,"url":null,"abstract":"<p>Evaluating the liquefaction capacity of saturated loose sandy and clayey soils is an important task to be completed in the course of implementing new construction projects in seismic areas. This article addresses the main characteristics and input parameters of three soil models, including HS small, UBC3D-PLM, and PM4Silt. The behavior of the “soil base–pile foundation–structure” system is examined by using these models to simulate the soil behavior during an earthquake. The results demonstrate the main differences between these models and draw attention to the importance of the choice of a soil model for seismic analysis, particularly when soil liquefaction is considered.</p>","PeriodicalId":21918,"journal":{"name":"Soil Mechanics and Foundation Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations of Soil Models Used to Study Soil Base Liquefaction\",\"authors\":\"V. V. Sidorov, Duc Anh Le\",\"doi\":\"10.1007/s11204-024-09954-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Evaluating the liquefaction capacity of saturated loose sandy and clayey soils is an important task to be completed in the course of implementing new construction projects in seismic areas. This article addresses the main characteristics and input parameters of three soil models, including HS small, UBC3D-PLM, and PM4Silt. The behavior of the “soil base–pile foundation–structure” system is examined by using these models to simulate the soil behavior during an earthquake. The results demonstrate the main differences between these models and draw attention to the importance of the choice of a soil model for seismic analysis, particularly when soil liquefaction is considered.</p>\",\"PeriodicalId\":21918,\"journal\":{\"name\":\"Soil Mechanics and Foundation Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Mechanics and Foundation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11204-024-09954-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Mechanics and Foundation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11204-024-09954-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

评估饱和松散砂土和粘性土的液化能力是在地震区实施新建筑项目过程中需要完成的一项重要任务。本文讨论了三种土壤模型(包括 HS small、UBC3D-PLM 和 PM4Silt)的主要特征和输入参数。通过使用这些模型模拟地震时的土壤行为,研究了 "土基-桩基础-结构 "系统的行为。结果表明了这些模型之间的主要差异,并提醒人们注意选择土壤模型进行地震分析的重要性,尤其是在考虑土壤液化的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigations of Soil Models Used to Study Soil Base Liquefaction

Evaluating the liquefaction capacity of saturated loose sandy and clayey soils is an important task to be completed in the course of implementing new construction projects in seismic areas. This article addresses the main characteristics and input parameters of three soil models, including HS small, UBC3D-PLM, and PM4Silt. The behavior of the “soil base–pile foundation–structure” system is examined by using these models to simulate the soil behavior during an earthquake. The results demonstrate the main differences between these models and draw attention to the importance of the choice of a soil model for seismic analysis, particularly when soil liquefaction is considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6 months
期刊介绍: Soil Mechanics and Foundation Engineering provides the Western engineer with a look at Russian advances in heavy construction techniques. Detailed contributions by experienced civil engineers offer insights into current difficulties in the field, applicable innovative solutions, and recently developed guidelines for soil analysis and foundation design.
期刊最新文献
Strength Degradation of Fractured Sandstone After Thawing of an Inclined Shaft Produced by Artificial Freezing Numerical Analysis of Pullout Bearing Capacity of End-Bearing Torpedo Anchors A Method for Calculating the Amount of Unfrozen Water in Frozen Saline Soils The Effect of Temperature Pathways on Unfrozen Water and Thermal Parameters of Frozen Soils Permeability Characteristics of Sedimentary Fine Tailings Including the Degree of Compaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1