Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, Kira Rehfeld
{"title":"瞬态模型模拟中从末次冰川极盛期到现在的地表气候变异性变化模式","authors":"Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, Kira Rehfeld","doi":"10.5194/egusphere-2024-1396","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> As of 2023, global mean temperature has risen by about 1.45 ± 0.12 °C with respect to the 1850–1900 pre-industrial baseline according to the World Meteorological Organization. This rise constitutes the first period of substantial global warming since the Last Deglaciation, when global temperatures rose over several millennia by about 4.0–7.0 °C according to proxy reconstructions. Similar levels of warming could be reached in the coming centuries considering current and possible future emissions. Such warming causes widespread changes in the climate system of which the mean state provides only an incomplete picture. Indeed, climate’s variability and the distributions of climate variables change with warming, impacting for example ecosystems and the frequency and intensity of extremes. However, climate variability during transition periods like the Last Deglaciation remains largely unexplored. Therefore, we investigate changes of climate variability on annual to millennial timescales in fifteen transient climate model simulations of the Last Deglaciation. This ensemble consists of models of varying complexity, from an energy balance model to Earth System Models and includes sensitivity experiments, which differ only in terms of their underlying ice sheet reconstruction, meltwater protocol, or consideration of volcanic forcing. While the ensemble simulates an increase of global mean temperature of 3.0–6.6 °C between the Last Glacial Maximum and Holocene, we examine whether common patterns of variability emerge in the ensemble. To this end, we compare the variability of surface climate during the Last Glacial Maximum, Deglaciation and Holocene by estimating and analyzing the distributions and power spectra of surface temperature and precipitation. For analyzing the distribution shapes, we turn to the higher order moments of variance, skewness and kurtosis. These show that the distributions cannot be assumed to be normal, a precondition for commonly used statistical methods. During the LGM and Holocene, they further reveal significant differences as most simulations feature larger variance during the LGM than Holocene, in-line with results from reconstructions. As a transition period, the Deglaciation stands out as a time of high variance of surface temperature and precipitation, especially on decadal and longer timescales. In general, this dependency on the mean state increases with model complexity, although there is a large spread between models of similar complexity. Some of that spread can be explained by differences in ice sheet, meltwater and volcanic forcings, revealing the impact of simulation protocols on simulated variability. The forcings affect variability not only on their characteristic timescales, rather, we find that they impact variability on all timescales from annual to millennial. The different forcing protocols further have a stronger imprint on the distributions of temperature than precipitation. A reanalysis of the LGM exhibits similar global mean variability to most of the ensemble, but spatial patterns vary. However, whether current paleoclimate data assimilation approaches reconstruct accurate levels of variability is unclear. As such, uncertainty around the models’ abilities to capture climate variability likewise remains, affecting simulations of all time periods, past, present and future. Decreasing this uncertainty warrants a systematic model-data comparisons of simulated variability during periods of warming.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"85 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns of changing surface climate variability from the Last Glacial Maximum to present in transient model simulations\",\"authors\":\"Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, Kira Rehfeld\",\"doi\":\"10.5194/egusphere-2024-1396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> As of 2023, global mean temperature has risen by about 1.45 ± 0.12 °C with respect to the 1850–1900 pre-industrial baseline according to the World Meteorological Organization. This rise constitutes the first period of substantial global warming since the Last Deglaciation, when global temperatures rose over several millennia by about 4.0–7.0 °C according to proxy reconstructions. Similar levels of warming could be reached in the coming centuries considering current and possible future emissions. Such warming causes widespread changes in the climate system of which the mean state provides only an incomplete picture. Indeed, climate’s variability and the distributions of climate variables change with warming, impacting for example ecosystems and the frequency and intensity of extremes. However, climate variability during transition periods like the Last Deglaciation remains largely unexplored. Therefore, we investigate changes of climate variability on annual to millennial timescales in fifteen transient climate model simulations of the Last Deglaciation. This ensemble consists of models of varying complexity, from an energy balance model to Earth System Models and includes sensitivity experiments, which differ only in terms of their underlying ice sheet reconstruction, meltwater protocol, or consideration of volcanic forcing. While the ensemble simulates an increase of global mean temperature of 3.0–6.6 °C between the Last Glacial Maximum and Holocene, we examine whether common patterns of variability emerge in the ensemble. To this end, we compare the variability of surface climate during the Last Glacial Maximum, Deglaciation and Holocene by estimating and analyzing the distributions and power spectra of surface temperature and precipitation. For analyzing the distribution shapes, we turn to the higher order moments of variance, skewness and kurtosis. These show that the distributions cannot be assumed to be normal, a precondition for commonly used statistical methods. During the LGM and Holocene, they further reveal significant differences as most simulations feature larger variance during the LGM than Holocene, in-line with results from reconstructions. As a transition period, the Deglaciation stands out as a time of high variance of surface temperature and precipitation, especially on decadal and longer timescales. In general, this dependency on the mean state increases with model complexity, although there is a large spread between models of similar complexity. Some of that spread can be explained by differences in ice sheet, meltwater and volcanic forcings, revealing the impact of simulation protocols on simulated variability. The forcings affect variability not only on their characteristic timescales, rather, we find that they impact variability on all timescales from annual to millennial. The different forcing protocols further have a stronger imprint on the distributions of temperature than precipitation. A reanalysis of the LGM exhibits similar global mean variability to most of the ensemble, but spatial patterns vary. However, whether current paleoclimate data assimilation approaches reconstruct accurate levels of variability is unclear. As such, uncertainty around the models’ abilities to capture climate variability likewise remains, affecting simulations of all time periods, past, present and future. Decreasing this uncertainty warrants a systematic model-data comparisons of simulated variability during periods of warming.\",\"PeriodicalId\":10332,\"journal\":{\"name\":\"Climate of The Past\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1396\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1396","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Patterns of changing surface climate variability from the Last Glacial Maximum to present in transient model simulations
Abstract. As of 2023, global mean temperature has risen by about 1.45 ± 0.12 °C with respect to the 1850–1900 pre-industrial baseline according to the World Meteorological Organization. This rise constitutes the first period of substantial global warming since the Last Deglaciation, when global temperatures rose over several millennia by about 4.0–7.0 °C according to proxy reconstructions. Similar levels of warming could be reached in the coming centuries considering current and possible future emissions. Such warming causes widespread changes in the climate system of which the mean state provides only an incomplete picture. Indeed, climate’s variability and the distributions of climate variables change with warming, impacting for example ecosystems and the frequency and intensity of extremes. However, climate variability during transition periods like the Last Deglaciation remains largely unexplored. Therefore, we investigate changes of climate variability on annual to millennial timescales in fifteen transient climate model simulations of the Last Deglaciation. This ensemble consists of models of varying complexity, from an energy balance model to Earth System Models and includes sensitivity experiments, which differ only in terms of their underlying ice sheet reconstruction, meltwater protocol, or consideration of volcanic forcing. While the ensemble simulates an increase of global mean temperature of 3.0–6.6 °C between the Last Glacial Maximum and Holocene, we examine whether common patterns of variability emerge in the ensemble. To this end, we compare the variability of surface climate during the Last Glacial Maximum, Deglaciation and Holocene by estimating and analyzing the distributions and power spectra of surface temperature and precipitation. For analyzing the distribution shapes, we turn to the higher order moments of variance, skewness and kurtosis. These show that the distributions cannot be assumed to be normal, a precondition for commonly used statistical methods. During the LGM and Holocene, they further reveal significant differences as most simulations feature larger variance during the LGM than Holocene, in-line with results from reconstructions. As a transition period, the Deglaciation stands out as a time of high variance of surface temperature and precipitation, especially on decadal and longer timescales. In general, this dependency on the mean state increases with model complexity, although there is a large spread between models of similar complexity. Some of that spread can be explained by differences in ice sheet, meltwater and volcanic forcings, revealing the impact of simulation protocols on simulated variability. The forcings affect variability not only on their characteristic timescales, rather, we find that they impact variability on all timescales from annual to millennial. The different forcing protocols further have a stronger imprint on the distributions of temperature than precipitation. A reanalysis of the LGM exhibits similar global mean variability to most of the ensemble, but spatial patterns vary. However, whether current paleoclimate data assimilation approaches reconstruct accurate levels of variability is unclear. As such, uncertainty around the models’ abilities to capture climate variability likewise remains, affecting simulations of all time periods, past, present and future. Decreasing this uncertainty warrants a systematic model-data comparisons of simulated variability during periods of warming.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.