{"title":"利用新型 MIL-101(Fe)/ZrO2/MnFe2O4 纳米复合催化剂的超声辅助异相工艺从水介质中去除有机染料污染物","authors":"Meysam Sadeghi, Pourya Zarshenas","doi":"10.1007/s40201-024-00906-0","DOIUrl":null,"url":null,"abstract":"<div><p>The heterogeneous sonocatalysis is considered as an impressive remediation approach to eliminate the dyeing wastewaters. Among the efficient sonocatalytic remediation, nanocomposite sonocatalysts have grabbed special attention in recent years. In the presence research, the novel MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub> nanocomposite as a magnetically retrievable catalyst was elaborated using the ultrasound-assisted hydrothermal route and its sonocatalytic performance was tested applying the methylene blue (MB), rhodamine B (RhB), congo red (CR), and methyl orange (MO) organic dyes under US/H<sub>2</sub>O<sub>2</sub> system. The as-fabricated nanocomposite is well identified via FESEM, TEM, EDX, EDX elemental dot mappings, AFM, FTIR, XRD, BET, UV-Vis DRS, and VSM. The sonocatalytic destruction outcomes have demonstrated that the MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub> shows appreciable performance for the destruction of MB, RhB, CR, and MO with the yields of 98.17%, 96.35%, 93.40%, and 89.82%, respectively under the optimized conditions of irradiation time of 7 min, dye concentration of 25 mg/L, catalyst amount of 10 mg, US power intensity of 100 W, H<sub>2</sub>O<sub>2</sub> concentration of 4 mM, pH of 7, and temperature of 25 ± 1 °C. The fitted kinetic curves were exhibited a first-order model and the half-life time (t<sub>1/2</sub>) and reaction rate constant (k<sub>app</sub>) of the MB sonodestruction were determined to be 1.20 min and 0.5768 min<sup>−1</sup> employing the MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub>/US/H<sub>2</sub>O<sub>2</sub> system, respectively. The free <sup>•</sup>OH radicals were having a crucial role in the MB sonodestruction reaction, affirmed via quenching the experiments. Besides, the reusing experiments indicate that the MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub> represents propitious stability and long durability and reminded more than 93% after four cycles.</p><h3>Graphical Abstract</h3><p>The metal-organic framework MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub> heterojunction magnetically retrievable nanocomposite was successfully prepared and used as a new sonocatalyst for the destruction of MB, RhB, CR, and MO toxic organic dye pollutants from water medium.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 2","pages":"483 - 501"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-assisted heterogeneous process for organic dye pollutants destruction using the novel MIL-101(Fe)/ZrO2/MnFe2O4 nanocomposite catalyst from water medium\",\"authors\":\"Meysam Sadeghi, Pourya Zarshenas\",\"doi\":\"10.1007/s40201-024-00906-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The heterogeneous sonocatalysis is considered as an impressive remediation approach to eliminate the dyeing wastewaters. Among the efficient sonocatalytic remediation, nanocomposite sonocatalysts have grabbed special attention in recent years. In the presence research, the novel MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub> nanocomposite as a magnetically retrievable catalyst was elaborated using the ultrasound-assisted hydrothermal route and its sonocatalytic performance was tested applying the methylene blue (MB), rhodamine B (RhB), congo red (CR), and methyl orange (MO) organic dyes under US/H<sub>2</sub>O<sub>2</sub> system. The as-fabricated nanocomposite is well identified via FESEM, TEM, EDX, EDX elemental dot mappings, AFM, FTIR, XRD, BET, UV-Vis DRS, and VSM. The sonocatalytic destruction outcomes have demonstrated that the MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub> shows appreciable performance for the destruction of MB, RhB, CR, and MO with the yields of 98.17%, 96.35%, 93.40%, and 89.82%, respectively under the optimized conditions of irradiation time of 7 min, dye concentration of 25 mg/L, catalyst amount of 10 mg, US power intensity of 100 W, H<sub>2</sub>O<sub>2</sub> concentration of 4 mM, pH of 7, and temperature of 25 ± 1 °C. The fitted kinetic curves were exhibited a first-order model and the half-life time (t<sub>1/2</sub>) and reaction rate constant (k<sub>app</sub>) of the MB sonodestruction were determined to be 1.20 min and 0.5768 min<sup>−1</sup> employing the MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub>/US/H<sub>2</sub>O<sub>2</sub> system, respectively. The free <sup>•</sup>OH radicals were having a crucial role in the MB sonodestruction reaction, affirmed via quenching the experiments. Besides, the reusing experiments indicate that the MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub> represents propitious stability and long durability and reminded more than 93% after four cycles.</p><h3>Graphical Abstract</h3><p>The metal-organic framework MIL-101(Fe)/ZrO<sub>2</sub>/MnFe<sub>2</sub>O<sub>4</sub> heterojunction magnetically retrievable nanocomposite was successfully prepared and used as a new sonocatalyst for the destruction of MB, RhB, CR, and MO toxic organic dye pollutants from water medium.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"22 2\",\"pages\":\"483 - 501\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-024-00906-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-024-00906-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Ultrasound-assisted heterogeneous process for organic dye pollutants destruction using the novel MIL-101(Fe)/ZrO2/MnFe2O4 nanocomposite catalyst from water medium
The heterogeneous sonocatalysis is considered as an impressive remediation approach to eliminate the dyeing wastewaters. Among the efficient sonocatalytic remediation, nanocomposite sonocatalysts have grabbed special attention in recent years. In the presence research, the novel MIL-101(Fe)/ZrO2/MnFe2O4 nanocomposite as a magnetically retrievable catalyst was elaborated using the ultrasound-assisted hydrothermal route and its sonocatalytic performance was tested applying the methylene blue (MB), rhodamine B (RhB), congo red (CR), and methyl orange (MO) organic dyes under US/H2O2 system. The as-fabricated nanocomposite is well identified via FESEM, TEM, EDX, EDX elemental dot mappings, AFM, FTIR, XRD, BET, UV-Vis DRS, and VSM. The sonocatalytic destruction outcomes have demonstrated that the MIL-101(Fe)/ZrO2/MnFe2O4 shows appreciable performance for the destruction of MB, RhB, CR, and MO with the yields of 98.17%, 96.35%, 93.40%, and 89.82%, respectively under the optimized conditions of irradiation time of 7 min, dye concentration of 25 mg/L, catalyst amount of 10 mg, US power intensity of 100 W, H2O2 concentration of 4 mM, pH of 7, and temperature of 25 ± 1 °C. The fitted kinetic curves were exhibited a first-order model and the half-life time (t1/2) and reaction rate constant (kapp) of the MB sonodestruction were determined to be 1.20 min and 0.5768 min−1 employing the MIL-101(Fe)/ZrO2/MnFe2O4/US/H2O2 system, respectively. The free •OH radicals were having a crucial role in the MB sonodestruction reaction, affirmed via quenching the experiments. Besides, the reusing experiments indicate that the MIL-101(Fe)/ZrO2/MnFe2O4 represents propitious stability and long durability and reminded more than 93% after four cycles.
Graphical Abstract
The metal-organic framework MIL-101(Fe)/ZrO2/MnFe2O4 heterojunction magnetically retrievable nanocomposite was successfully prepared and used as a new sonocatalyst for the destruction of MB, RhB, CR, and MO toxic organic dye pollutants from water medium.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene