校准与计算:伊利湖西部一维和三维浮游植物模拟的比较

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Aquatic Ecosystem Health & Management Pub Date : 2024-05-01 DOI:10.14321/aehm.026.04.76
Qi Wang, Nader Nakhaei, Leon Boegman
{"title":"校准与计算:伊利湖西部一维和三维浮游植物模拟的比较","authors":"Qi Wang, Nader Nakhaei, Leon Boegman","doi":"10.14321/aehm.026.04.76","DOIUrl":null,"url":null,"abstract":"Numerical models are commonly used tools to simulate hydrodynamics and water quality of lakes. Model dimensionality (0D, 1D, 2D, or 3D) requires different simplification levels of physical-biogeochemical processes, computational power and calibration strategies and metrics against observations. To investigate these modelling considerations, the 1D (vertical) Aquatic Ecosystem Dynamics – General Lake Model and the 3D Aquatic Ecosystem Model were applied to western Lake Erie in 2008 and 2011-14. The performance of the models was evaluated by comparing the simulations against observations of water temperature, total phosphorus, orthophosphate, nitrate, total chlorophyll-a and cyanobacteria at three stations located along a transect from the Maumee River mouth to mid-basin, as well as to the basin-averaged cyanobacteria index. The 3D model showed better skill in qualitatively reproducing seasonal and spatial variations of nutrients and phytoplankton and had lower average root-mean-square error, especially through the algal plume near the Maumee River mouth. however, the horizontally averaged 1D model performed better in qualitatively capturing the cyanobacteria bloom years, as this model was extensively calibrated to basin-average values. We conclude that models should be selected and calibrated to provide the required decision support information, rather than the highest resolution or lowest error metrics at discrete sites.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"51 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration versus computation: Comparison between 1D and 3D phytoplankton simulations in western Lake Erie\",\"authors\":\"Qi Wang, Nader Nakhaei, Leon Boegman\",\"doi\":\"10.14321/aehm.026.04.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical models are commonly used tools to simulate hydrodynamics and water quality of lakes. Model dimensionality (0D, 1D, 2D, or 3D) requires different simplification levels of physical-biogeochemical processes, computational power and calibration strategies and metrics against observations. To investigate these modelling considerations, the 1D (vertical) Aquatic Ecosystem Dynamics – General Lake Model and the 3D Aquatic Ecosystem Model were applied to western Lake Erie in 2008 and 2011-14. The performance of the models was evaluated by comparing the simulations against observations of water temperature, total phosphorus, orthophosphate, nitrate, total chlorophyll-a and cyanobacteria at three stations located along a transect from the Maumee River mouth to mid-basin, as well as to the basin-averaged cyanobacteria index. The 3D model showed better skill in qualitatively reproducing seasonal and spatial variations of nutrients and phytoplankton and had lower average root-mean-square error, especially through the algal plume near the Maumee River mouth. however, the horizontally averaged 1D model performed better in qualitatively capturing the cyanobacteria bloom years, as this model was extensively calibrated to basin-average values. We conclude that models should be selected and calibrated to provide the required decision support information, rather than the highest resolution or lowest error metrics at discrete sites.\",\"PeriodicalId\":8125,\"journal\":{\"name\":\"Aquatic Ecosystem Health & Management\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Ecosystem Health & Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.14321/aehm.026.04.76\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Ecosystem Health & Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.14321/aehm.026.04.76","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

数值模型是模拟湖泊水动力和水质的常用工具。模型维度(0D、1D、2D 或 3D 模型)要求对物理-生物地球化学过程、计算能力、校准策略和观测指标进行不同程度的简化。为了研究这些建模考虑因素,2008 年和 2011-14 年在伊利湖西部应用了一维(垂直)水生生态系统动力学--一般湖泊模型和三维水生生态系统模型。通过将模拟结果与从毛米河口到流域中段的三个观测站的水温、总磷、正磷酸盐、硝酸盐、总叶绿素-a 和蓝藻的观测结果以及流域平均蓝藻指数进行比较,对模型的性能进行了评估。三维模型在定性再现营养盐和浮游植物的季节和空间变化方面表现较好,平均均 方根误差也较小,尤其是在毛米河口附近的藻类羽流中。然而,水平平均一维模型在定性捕捉蓝藻藻华年份方面表现较好,因为该模型已根据流域平均值进行了广泛校准。我们的结论是,选择和校准模型时,应提供所需的决策支持信息,而不是在离散地点选择分辨率最高或误差最小的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration versus computation: Comparison between 1D and 3D phytoplankton simulations in western Lake Erie
Numerical models are commonly used tools to simulate hydrodynamics and water quality of lakes. Model dimensionality (0D, 1D, 2D, or 3D) requires different simplification levels of physical-biogeochemical processes, computational power and calibration strategies and metrics against observations. To investigate these modelling considerations, the 1D (vertical) Aquatic Ecosystem Dynamics – General Lake Model and the 3D Aquatic Ecosystem Model were applied to western Lake Erie in 2008 and 2011-14. The performance of the models was evaluated by comparing the simulations against observations of water temperature, total phosphorus, orthophosphate, nitrate, total chlorophyll-a and cyanobacteria at three stations located along a transect from the Maumee River mouth to mid-basin, as well as to the basin-averaged cyanobacteria index. The 3D model showed better skill in qualitatively reproducing seasonal and spatial variations of nutrients and phytoplankton and had lower average root-mean-square error, especially through the algal plume near the Maumee River mouth. however, the horizontally averaged 1D model performed better in qualitatively capturing the cyanobacteria bloom years, as this model was extensively calibrated to basin-average values. We conclude that models should be selected and calibrated to provide the required decision support information, rather than the highest resolution or lowest error metrics at discrete sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Ecosystem Health & Management
Aquatic Ecosystem Health & Management 环境科学-海洋与淡水生物学
CiteScore
1.70
自引率
0.00%
发文量
1
审稿时长
18-36 weeks
期刊介绍: The journal publishes articles on the following themes and topics: • Original articles focusing on ecosystem-based sciences, ecosystem health and management of marine and aquatic ecosystems • Reviews, invited perspectives and keynote contributions from conferences • Special issues on important emerging topics, themes, and ecosystems (climate change, invasive species, HABs, risk assessment, models)
期刊最新文献
Impacts of dreissenid mussel growth and activity on phytoplankton and nutrients in Lake Erie's western basin Calibration versus computation: Comparison between 1D and 3D phytoplankton simulations in western Lake Erie Nitrification in the water column of Lake Erie: Seasonal patterns, community dynamics, and competition with cyanobacterial harmful algal blooms Dynamics of dissolved organic phosphorus in the nearshore of eastern Lake Erie Seasonal interactions between Quagga Mussel grazing and phytoplankton in western Lake Erie: The view from different measuring technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1