识别蛋白质靶标和发现先导物的系统计算策略

IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics MedChemComm Pub Date : 2024-05-31 DOI:10.1039/D4MD00223G
Arti Kataria, Ankit Srivastava, Desh Deepak Singh, Shafiul Haque, Ihn Han and Dharmendra Kumar Yadav
{"title":"识别蛋白质靶标和发现先导物的系统计算策略","authors":"Arti Kataria, Ankit Srivastava, Desh Deepak Singh, Shafiul Haque, Ihn Han and Dharmendra Kumar Yadav","doi":"10.1039/D4MD00223G","DOIUrl":null,"url":null,"abstract":"<p >Computational algorithms and tools have retrenched the drug discovery and development timeline. The applicability of computational approaches has gained immense relevance owing to the dramatic surge in the structural information of biomacromolecules and their heteromolecular complexes. Computational methods are now extensively used in identifying new protein targets, druggability assessment, pharmacophore mapping, molecular docking, the virtual screening of lead molecules, bioactivity prediction, molecular dynamics of protein–ligand complexes, affinity prediction, and for designing better ligands. Herein, we provide an overview of salient components of recently reported computational drug-discovery workflows that includes algorithms, tools, and databases for protein target identification and optimized ligand selection.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 7","pages":" 2254-2269"},"PeriodicalIF":3.5970,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic computational strategies for identifying protein targets and lead discovery\",\"authors\":\"Arti Kataria, Ankit Srivastava, Desh Deepak Singh, Shafiul Haque, Ihn Han and Dharmendra Kumar Yadav\",\"doi\":\"10.1039/D4MD00223G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Computational algorithms and tools have retrenched the drug discovery and development timeline. The applicability of computational approaches has gained immense relevance owing to the dramatic surge in the structural information of biomacromolecules and their heteromolecular complexes. Computational methods are now extensively used in identifying new protein targets, druggability assessment, pharmacophore mapping, molecular docking, the virtual screening of lead molecules, bioactivity prediction, molecular dynamics of protein–ligand complexes, affinity prediction, and for designing better ligands. Herein, we provide an overview of salient components of recently reported computational drug-discovery workflows that includes algorithms, tools, and databases for protein target identification and optimized ligand selection.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\" 7\",\"pages\":\" 2254-2269\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00223g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00223g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

计算算法和工具缩短了药物发现和开发的时间。由于生物大分子及其异分子复合物的结构信息急剧增加,计算方法的适用性变得越来越重要。目前,计算方法已广泛应用于确定新的蛋白质靶点、药物可药性评估、药理图谱、分子对接、先导分子的虚拟筛选、生物活性预测、蛋白质配体复合物的分子动力学、亲和力预测以及设计更好的配体。在此,我们将概述最近报道的计算药物发现工作流程的主要组成部分,包括用于蛋白质靶点识别和优化配体选择的算法、工具和数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic computational strategies for identifying protein targets and lead discovery

Computational algorithms and tools have retrenched the drug discovery and development timeline. The applicability of computational approaches has gained immense relevance owing to the dramatic surge in the structural information of biomacromolecules and their heteromolecular complexes. Computational methods are now extensively used in identifying new protein targets, druggability assessment, pharmacophore mapping, molecular docking, the virtual screening of lead molecules, bioactivity prediction, molecular dynamics of protein–ligand complexes, affinity prediction, and for designing better ligands. Herein, we provide an overview of salient components of recently reported computational drug-discovery workflows that includes algorithms, tools, and databases for protein target identification and optimized ligand selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MedChemComm
MedChemComm BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
2.2 months
期刊介绍: Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry. In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.
期刊最新文献
Back cover Introduction to the themed collection in honour of Professor Christian Leumann Back cover Correction: computational design, synthesis, and assessment of 3-(4-(4-(1,3,4-oxadiazol-2-yl)-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazole derivatives as effective epidermal growth factor receptor inhibitors: a prospective strategy for anticancer therapy Introduction to the themed collection on ‘AI in Medicinal Chemistry’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1