Yudong Pan, Ning Li, Yangsong Zhang, Peng Xu, Dezhong Yao
{"title":"通过基于生成式对抗网络的新型框架扩展短时长 SSVEP 数据","authors":"Yudong Pan, Ning Li, Yangsong Zhang, Peng Xu, Dezhong Yao","doi":"10.1007/s11571-024-10134-9","DOIUrl":null,"url":null,"abstract":"<p>Steady-state visual evoked potentials (SSVEPs) based brain–computer interface (BCI) has received considerable attention due to its high information transfer rate (ITR) and available quantity of targets. However, the performance of frequency identification methods heavily hinges on the amount of user calibration data and data length, which hinders the deployment in real-world applications. Recently, generative adversarial networks (GANs)-based data generation methods have been widely adopted to create synthetic electroencephalography data, holds promise to address these issues. In this paper, we proposed a GAN-based end-to-end signal transformation network for Time-window length Extension, termed as TEGAN. TEGAN transforms short-length SSVEP signals into long-length artificial SSVEP signals. Additionally, we introduced a two-stage training strategy and the LeCam-divergence regularization term to regularize the training process of GAN during the network implementation. The proposed TEGAN was evaluated on two public SSVEP datasets (a 4-class and 12-class dataset). With the assistance of TEGAN, the performance of traditional frequency recognition methods and deep learning-based methods have been significantly improved under limited calibration data. And the classification performance gap of various frequency recognition methods has been narrowed. This study substantiates the feasibility of the proposed method to extend the data length for short-time SSVEP signals for developing a high-performance BCI system. The proposed GAN-based methods have the great potential of shortening the calibration time and cutting down the budget for various real-world BCI-based applications.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-length SSVEP data extension by a novel generative adversarial networks based framework\",\"authors\":\"Yudong Pan, Ning Li, Yangsong Zhang, Peng Xu, Dezhong Yao\",\"doi\":\"10.1007/s11571-024-10134-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Steady-state visual evoked potentials (SSVEPs) based brain–computer interface (BCI) has received considerable attention due to its high information transfer rate (ITR) and available quantity of targets. However, the performance of frequency identification methods heavily hinges on the amount of user calibration data and data length, which hinders the deployment in real-world applications. Recently, generative adversarial networks (GANs)-based data generation methods have been widely adopted to create synthetic electroencephalography data, holds promise to address these issues. In this paper, we proposed a GAN-based end-to-end signal transformation network for Time-window length Extension, termed as TEGAN. TEGAN transforms short-length SSVEP signals into long-length artificial SSVEP signals. Additionally, we introduced a two-stage training strategy and the LeCam-divergence regularization term to regularize the training process of GAN during the network implementation. The proposed TEGAN was evaluated on two public SSVEP datasets (a 4-class and 12-class dataset). With the assistance of TEGAN, the performance of traditional frequency recognition methods and deep learning-based methods have been significantly improved under limited calibration data. And the classification performance gap of various frequency recognition methods has been narrowed. This study substantiates the feasibility of the proposed method to extend the data length for short-time SSVEP signals for developing a high-performance BCI system. The proposed GAN-based methods have the great potential of shortening the calibration time and cutting down the budget for various real-world BCI-based applications.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10134-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10134-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Short-length SSVEP data extension by a novel generative adversarial networks based framework
Steady-state visual evoked potentials (SSVEPs) based brain–computer interface (BCI) has received considerable attention due to its high information transfer rate (ITR) and available quantity of targets. However, the performance of frequency identification methods heavily hinges on the amount of user calibration data and data length, which hinders the deployment in real-world applications. Recently, generative adversarial networks (GANs)-based data generation methods have been widely adopted to create synthetic electroencephalography data, holds promise to address these issues. In this paper, we proposed a GAN-based end-to-end signal transformation network for Time-window length Extension, termed as TEGAN. TEGAN transforms short-length SSVEP signals into long-length artificial SSVEP signals. Additionally, we introduced a two-stage training strategy and the LeCam-divergence regularization term to regularize the training process of GAN during the network implementation. The proposed TEGAN was evaluated on two public SSVEP datasets (a 4-class and 12-class dataset). With the assistance of TEGAN, the performance of traditional frequency recognition methods and deep learning-based methods have been significantly improved under limited calibration data. And the classification performance gap of various frequency recognition methods has been narrowed. This study substantiates the feasibility of the proposed method to extend the data length for short-time SSVEP signals for developing a high-performance BCI system. The proposed GAN-based methods have the great potential of shortening the calibration time and cutting down the budget for various real-world BCI-based applications.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.