用于高维微生物组数据的新型鲁棒协方差矩阵估算法

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Australian & New Zealand Journal of Statistics Pub Date : 2024-05-28 DOI:10.1111/anzs.12415
Jiyang Wang, Wanfeng Liang, Lijie Li, Yue Wu, Xiaoyan Ma
{"title":"用于高维微生物组数据的新型鲁棒协方差矩阵估算法","authors":"Jiyang Wang,&nbsp;Wanfeng Liang,&nbsp;Lijie Li,&nbsp;Yue Wu,&nbsp;Xiaoyan Ma","doi":"10.1111/anzs.12415","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microbiome data typically lie in a high-dimensional simplex. One of the key questions in metagenomic analysis is to exploit the covariance structure for this kind of data. In this paper, a framework called approximate-estimate-threshold (AET) is developed for the robust basis covariance estimation for high-dimensional microbiome data. To be specific, we first construct a proxy matrix <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{\\Gamma} $$</annotation>\n </semantics></math>, which is almost indistinguishable from the real basis covariance matrix <span></span><math>\n <semantics>\n <mrow>\n <mi>∑</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{\\Sigma} $$</annotation>\n </semantics></math>. Then, any estimator <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Gamma}} $$</annotation>\n </semantics></math> satisfying some conditions can be used to estimate <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{\\Gamma} $$</annotation>\n </semantics></math>. Finally, we impose a thresholding step on <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Gamma}} $$</annotation>\n </semantics></math> to obtain the final estimator <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>∑</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Sigma}} $$</annotation>\n </semantics></math>. In particular, this paper applies a Huber-type estimator <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Gamma}} $$</annotation>\n </semantics></math>, and achieves robustness by only requiring the boundedness of 2+<span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <annotation>$$ \\epsilon $$</annotation>\n </semantics></math> moments for some <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$$ \\epsilon \\in \\left(0,2\\right] $$</annotation>\n </semantics></math>. We derive the convergence rate of <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>∑</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Sigma}} $$</annotation>\n </semantics></math> under the spectral norm, and provide theoretical guarantees on support recovery. Extensive simulations and a real example are used to illustrate the empirical performance of our method.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 2","pages":"281-295"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new robust covariance matrix estimation for high-dimensional microbiome data\",\"authors\":\"Jiyang Wang,&nbsp;Wanfeng Liang,&nbsp;Lijie Li,&nbsp;Yue Wu,&nbsp;Xiaoyan Ma\",\"doi\":\"10.1111/anzs.12415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Microbiome data typically lie in a high-dimensional simplex. One of the key questions in metagenomic analysis is to exploit the covariance structure for this kind of data. In this paper, a framework called approximate-estimate-threshold (AET) is developed for the robust basis covariance estimation for high-dimensional microbiome data. To be specific, we first construct a proxy matrix <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\boldsymbol{\\\\Gamma} $$</annotation>\\n </semantics></math>, which is almost indistinguishable from the real basis covariance matrix <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∑</mi>\\n </mrow>\\n <annotation>$$ \\\\boldsymbol{\\\\Sigma} $$</annotation>\\n </semantics></math>. Then, any estimator <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Gamma}} $$</annotation>\\n </semantics></math> satisfying some conditions can be used to estimate <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\boldsymbol{\\\\Gamma} $$</annotation>\\n </semantics></math>. Finally, we impose a thresholding step on <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Gamma}} $$</annotation>\\n </semantics></math> to obtain the final estimator <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>∑</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Sigma}} $$</annotation>\\n </semantics></math>. In particular, this paper applies a Huber-type estimator <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Gamma}} $$</annotation>\\n </semantics></math>, and achieves robustness by only requiring the boundedness of 2+<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <annotation>$$ \\\\epsilon $$</annotation>\\n </semantics></math> moments for some <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$$ \\\\epsilon \\\\in \\\\left(0,2\\\\right] $$</annotation>\\n </semantics></math>. We derive the convergence rate of <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>∑</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Sigma}} $$</annotation>\\n </semantics></math> under the spectral norm, and provide theoretical guarantees on support recovery. Extensive simulations and a real example are used to illustrate the empirical performance of our method.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"66 2\",\"pages\":\"281-295\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12415\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12415","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要微生物组数据通常位于高维单纯形中。元基因组分析的关键问题之一是如何利用这类数据的协方差结构。本文为高维微生物组数据的稳健基础协方差估计建立了一个称为近似估计阈值(AET)的框架。具体来说,我们首先构建一个代理矩阵 ,它与真实的基础协方差矩阵几乎没有区别。然后,任何满足某些条件的估计器都可以用来估计 。最后,我们对其进行阈值化处理,得到最终的估计值。本文特别应用了一种 Huber 型估计器 , 并通过只要求某些 ...的 2+ 矩的有界性来实现稳健性。我们推导了谱规范下的收敛率,并提供了支持恢复的理论保证。我们利用大量模拟和一个实际例子来说明我们方法的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new robust covariance matrix estimation for high-dimensional microbiome data

Microbiome data typically lie in a high-dimensional simplex. One of the key questions in metagenomic analysis is to exploit the covariance structure for this kind of data. In this paper, a framework called approximate-estimate-threshold (AET) is developed for the robust basis covariance estimation for high-dimensional microbiome data. To be specific, we first construct a proxy matrix Γ $$ \boldsymbol{\Gamma} $$ , which is almost indistinguishable from the real basis covariance matrix $$ \boldsymbol{\Sigma} $$ . Then, any estimator Γ ^ $$ \hat{\boldsymbol{\Gamma}} $$ satisfying some conditions can be used to estimate Γ $$ \boldsymbol{\Gamma} $$ . Finally, we impose a thresholding step on Γ ^ $$ \hat{\boldsymbol{\Gamma}} $$ to obtain the final estimator ^ $$ \hat{\boldsymbol{\Sigma}} $$ . In particular, this paper applies a Huber-type estimator Γ ^ $$ \hat{\boldsymbol{\Gamma}} $$ , and achieves robustness by only requiring the boundedness of 2+ ϵ $$ \epsilon $$ moments for some ϵ ( 0 , 2 ] $$ \epsilon \in \left(0,2\right] $$ . We derive the convergence rate of ^ $$ \hat{\boldsymbol{\Sigma}} $$ under the spectral norm, and provide theoretical guarantees on support recovery. Extensive simulations and a real example are used to illustrate the empirical performance of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian & New Zealand Journal of Statistics
Australian & New Zealand Journal of Statistics 数学-统计学与概率论
CiteScore
1.30
自引率
9.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association. The main body of the journal is divided into three sections. The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data. The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context. The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.
期刊最新文献
Issue Information PanIC: Consistent information criteria for general model selection problems Prediction de-correlated inference: A safe approach for post-prediction inference Telling Stories with Data: With Application in R. By Rohan Alexander. CRC Press. 2023. 622 pages. AU$129.60 (hardback). ISBN: 978-1-0321-3477-2. Full Bayesian analysis of triple seasonal autoregressive models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1