{"title":"高压辊磨和磁选实现磨矿节能并同时提高选矿能力:磁铁矿案例研究","authors":"Jianwen Yu, Yaxiong An, Peng Gao, Yuexin Han","doi":"10.1007/s42461-024-01015-0","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an industrial verification test, adding a high pressure grinding roll and magnetic separation operation after the third-stage fine crushing operation to reduce the particle size of ball mill feed and improve the processing capacity of grinding operation. The optimal process parameters of high pressure grinding roll and magnetic separation were determined to be a 10 mm of roller surface spacing, a 10.5 Mpa of roller surface pressure, a 14 r/min of roller surface speed, a particle feed size to the magnetic separator of P<sub>100</sub> 3 mm, and a 3000 Oe of magnetic field intensity. Under the above optimized conditions, the iron grade of magnetic pre-enriched concentrate increased significantly from 28.27% to 36.30%, and the iron recovery was 87.59%. Meanwhile, the yield of coarse tailings was 36.16%, which significantly reduced the amount of ore entering the subsequent ball mill-magnetic separation operation. The ball mill Bond work index W<sub>ib</sub> of raw materials and the pre-enriched concentrate were 11.76 kW•h/t and 10.46 kW•h/t, respectively. The relative grindability of the pre-enriched concentrate was increased by 34%.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Pressure Grinding Roll and Magnetic Separation for Energy Saving in Grinding and Simultaneously Improving Processing Capacity: A Case Study of a Magnetite Ore\",\"authors\":\"Jianwen Yu, Yaxiong An, Peng Gao, Yuexin Han\",\"doi\":\"10.1007/s42461-024-01015-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents an industrial verification test, adding a high pressure grinding roll and magnetic separation operation after the third-stage fine crushing operation to reduce the particle size of ball mill feed and improve the processing capacity of grinding operation. The optimal process parameters of high pressure grinding roll and magnetic separation were determined to be a 10 mm of roller surface spacing, a 10.5 Mpa of roller surface pressure, a 14 r/min of roller surface speed, a particle feed size to the magnetic separator of P<sub>100</sub> 3 mm, and a 3000 Oe of magnetic field intensity. Under the above optimized conditions, the iron grade of magnetic pre-enriched concentrate increased significantly from 28.27% to 36.30%, and the iron recovery was 87.59%. Meanwhile, the yield of coarse tailings was 36.16%, which significantly reduced the amount of ore entering the subsequent ball mill-magnetic separation operation. The ball mill Bond work index W<sub>ib</sub> of raw materials and the pre-enriched concentrate were 11.76 kW•h/t and 10.46 kW•h/t, respectively. The relative grindability of the pre-enriched concentrate was increased by 34%.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01015-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01015-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
High Pressure Grinding Roll and Magnetic Separation for Energy Saving in Grinding and Simultaneously Improving Processing Capacity: A Case Study of a Magnetite Ore
This paper presents an industrial verification test, adding a high pressure grinding roll and magnetic separation operation after the third-stage fine crushing operation to reduce the particle size of ball mill feed and improve the processing capacity of grinding operation. The optimal process parameters of high pressure grinding roll and magnetic separation were determined to be a 10 mm of roller surface spacing, a 10.5 Mpa of roller surface pressure, a 14 r/min of roller surface speed, a particle feed size to the magnetic separator of P100 3 mm, and a 3000 Oe of magnetic field intensity. Under the above optimized conditions, the iron grade of magnetic pre-enriched concentrate increased significantly from 28.27% to 36.30%, and the iron recovery was 87.59%. Meanwhile, the yield of coarse tailings was 36.16%, which significantly reduced the amount of ore entering the subsequent ball mill-magnetic separation operation. The ball mill Bond work index Wib of raw materials and the pre-enriched concentrate were 11.76 kW•h/t and 10.46 kW•h/t, respectively. The relative grindability of the pre-enriched concentrate was increased by 34%.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.