G. R. Zenikov, S. D. Khizhnyak, A. I. Ivanova, P. M. Pakhomov
{"title":"含壳聚糖和电解质的半胱氨酸-银溶液中的自组织和凝胶化过程","authors":"G. R. Zenikov, S. D. Khizhnyak, A. I. Ivanova, P. M. Pakhomov","doi":"10.1134/S1061933X24600143","DOIUrl":null,"url":null,"abstract":"<p>The self-assembly and gelation processes in low-concentrated aqueous solutions of L-cysteine and silver nitrate (cysteine–silver solution, CSS); low-molecular-weight water-soluble chitosan (CS); and a gelation initiator, CuSO<sub>4</sub>, have been studied by various physicochemical methods, namely, UV spectroscopy, dynamic light scattering, pH-metry, viscometry, and scanning electron microscopy. It has been found that the gelation of CSS, which is used as a gel precursor, under the action of chitosan (CS) and copper sulfate occurs in a narrow concentration range: <i>C</i><sub>CH</sub> = 0.0100–0.0150 mg/mL, <span>\\({{C}_{{{\\text{CuS}}{{{\\text{O}}}_{{\\text{4}}}}}}}\\)</span> = 0.4–0.6 mМ, <i>C</i><sub>L-cys</sub> = 3.00 mМ, and <span>\\({{C}_{{{\\text{AgN}}{{{\\text{O}}}_{{\\text{3}}}}}}}\\)</span> = 3.75 mM, when Ag<sup>+</sup>/Cys molar ratio is 1.27. Hydrogels of various CSS–CS and CSS–CS–CuSO<sub>4</sub> compositions possess no high mechanical strength; however, they are stable in the course time. The structural elements of CSS, i.e., cluster chains of silver merchaptide (SM) zwitterions, are positively charged; therefore, no polyelectrolyte complexation occurs in CSS–CS and CSS–CS–CuSO<sub>4</sub> hydrogels, because the pH of CSS is 2.6. Addition of CuSO<sub>4</sub> to CSS–CS samples promotes the formation of a more strong hydrogel due to the association of SM clusters and CS molecules with sulfate anions and the coordination of Cu(II) ions with deprotonated carboxyl groups of different clusters.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Self-Organization and Gelation Processes in a Cysteine–Silver Solution Containing Chitosan and an Electrolyte\",\"authors\":\"G. R. Zenikov, S. D. Khizhnyak, A. I. Ivanova, P. M. Pakhomov\",\"doi\":\"10.1134/S1061933X24600143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The self-assembly and gelation processes in low-concentrated aqueous solutions of L-cysteine and silver nitrate (cysteine–silver solution, CSS); low-molecular-weight water-soluble chitosan (CS); and a gelation initiator, CuSO<sub>4</sub>, have been studied by various physicochemical methods, namely, UV spectroscopy, dynamic light scattering, pH-metry, viscometry, and scanning electron microscopy. It has been found that the gelation of CSS, which is used as a gel precursor, under the action of chitosan (CS) and copper sulfate occurs in a narrow concentration range: <i>C</i><sub>CH</sub> = 0.0100–0.0150 mg/mL, <span>\\\\({{C}_{{{\\\\text{CuS}}{{{\\\\text{O}}}_{{\\\\text{4}}}}}}}\\\\)</span> = 0.4–0.6 mМ, <i>C</i><sub>L-cys</sub> = 3.00 mМ, and <span>\\\\({{C}_{{{\\\\text{AgN}}{{{\\\\text{O}}}_{{\\\\text{3}}}}}}}\\\\)</span> = 3.75 mM, when Ag<sup>+</sup>/Cys molar ratio is 1.27. Hydrogels of various CSS–CS and CSS–CS–CuSO<sub>4</sub> compositions possess no high mechanical strength; however, they are stable in the course time. The structural elements of CSS, i.e., cluster chains of silver merchaptide (SM) zwitterions, are positively charged; therefore, no polyelectrolyte complexation occurs in CSS–CS and CSS–CS–CuSO<sub>4</sub> hydrogels, because the pH of CSS is 2.6. Addition of CuSO<sub>4</sub> to CSS–CS samples promotes the formation of a more strong hydrogel due to the association of SM clusters and CS molecules with sulfate anions and the coordination of Cu(II) ions with deprotonated carboxyl groups of different clusters.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X24600143\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600143","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The Self-Organization and Gelation Processes in a Cysteine–Silver Solution Containing Chitosan and an Electrolyte
The self-assembly and gelation processes in low-concentrated aqueous solutions of L-cysteine and silver nitrate (cysteine–silver solution, CSS); low-molecular-weight water-soluble chitosan (CS); and a gelation initiator, CuSO4, have been studied by various physicochemical methods, namely, UV spectroscopy, dynamic light scattering, pH-metry, viscometry, and scanning electron microscopy. It has been found that the gelation of CSS, which is used as a gel precursor, under the action of chitosan (CS) and copper sulfate occurs in a narrow concentration range: CCH = 0.0100–0.0150 mg/mL, \({{C}_{{{\text{CuS}}{{{\text{O}}}_{{\text{4}}}}}}}\) = 0.4–0.6 mМ, CL-cys = 3.00 mМ, and \({{C}_{{{\text{AgN}}{{{\text{O}}}_{{\text{3}}}}}}}\) = 3.75 mM, when Ag+/Cys molar ratio is 1.27. Hydrogels of various CSS–CS and CSS–CS–CuSO4 compositions possess no high mechanical strength; however, they are stable in the course time. The structural elements of CSS, i.e., cluster chains of silver merchaptide (SM) zwitterions, are positively charged; therefore, no polyelectrolyte complexation occurs in CSS–CS and CSS–CS–CuSO4 hydrogels, because the pH of CSS is 2.6. Addition of CuSO4 to CSS–CS samples promotes the formation of a more strong hydrogel due to the association of SM clusters and CS molecules with sulfate anions and the coordination of Cu(II) ions with deprotonated carboxyl groups of different clusters.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.