使用卷积 Tumnet 架构进行多模态脑肿瘤分类

IF 2.7 4区 医学 Q2 CLINICAL NEUROLOGY Behavioural Neurology Pub Date : 2024-05-30 DOI:10.1155/2024/4678554
M. Padma Usha, G. Kannan, M. Ramamoorthy
{"title":"使用卷积 Tumnet 架构进行多模态脑肿瘤分类","authors":"M. Padma Usha, G. Kannan, M. Ramamoorthy","doi":"10.1155/2024/4678554","DOIUrl":null,"url":null,"abstract":"The most common and aggressive tumor is brain malignancy, which has a short life span in the fourth grade of the disease. As a result, the medical plan may be a crucial step toward improving the well-being of a patient. Both diagnosis and therapy are part of the medical plan. Brain tumors are commonly imaged with magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). In this paper, multimodal fused imaging with classification and segmentation for brain tumors was proposed using the deep learning method. The MRI and CT brain tumor images of the same slices (308 slices of meningioma and sarcoma) are combined using three different types of pixel-level fusion methods. The presence/absence of a tumor is classified using the proposed Tumnet technique, and the tumor area is found accordingly. In the other case, Tumnet is also applied for single-modal MRI/CT (561 image slices) for classification. The proposed Tumnet was modeled with 5 convolutional layers, 3 pooling layers with ReLU activation function, and 3 fully connected layers. The first-order statistical fusion metrics for an average method of MRI-CT images are obtained as SSIM tissue at 83%, SSIM bone at 84%, accuracy at 90%, sensitivity at 96%, and specificity at 95%, and the second-order statistical fusion metrics are obtained as the standard deviation of fused images at 79% and entropy at 0.99. The entropy value confirms the presence of additional features in the fused image. The proposed Tumnet yields a sensitivity of 96%, an accuracy of 98%, a specificity of 99%, normalized values of the mean of 0.75, a standard deviation of 0.4, a variance of 0.16, and an entropy of 0.90.","PeriodicalId":50733,"journal":{"name":"Behavioural Neurology","volume":"40 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Brain Tumor Classification Using Convolutional Tumnet Architecture\",\"authors\":\"M. Padma Usha, G. Kannan, M. Ramamoorthy\",\"doi\":\"10.1155/2024/4678554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common and aggressive tumor is brain malignancy, which has a short life span in the fourth grade of the disease. As a result, the medical plan may be a crucial step toward improving the well-being of a patient. Both diagnosis and therapy are part of the medical plan. Brain tumors are commonly imaged with magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). In this paper, multimodal fused imaging with classification and segmentation for brain tumors was proposed using the deep learning method. The MRI and CT brain tumor images of the same slices (308 slices of meningioma and sarcoma) are combined using three different types of pixel-level fusion methods. The presence/absence of a tumor is classified using the proposed Tumnet technique, and the tumor area is found accordingly. In the other case, Tumnet is also applied for single-modal MRI/CT (561 image slices) for classification. The proposed Tumnet was modeled with 5 convolutional layers, 3 pooling layers with ReLU activation function, and 3 fully connected layers. The first-order statistical fusion metrics for an average method of MRI-CT images are obtained as SSIM tissue at 83%, SSIM bone at 84%, accuracy at 90%, sensitivity at 96%, and specificity at 95%, and the second-order statistical fusion metrics are obtained as the standard deviation of fused images at 79% and entropy at 0.99. The entropy value confirms the presence of additional features in the fused image. The proposed Tumnet yields a sensitivity of 96%, an accuracy of 98%, a specificity of 99%, normalized values of the mean of 0.75, a standard deviation of 0.4, a variance of 0.16, and an entropy of 0.90.\",\"PeriodicalId\":50733,\"journal\":{\"name\":\"Behavioural Neurology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4678554\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/4678554","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最常见和最具侵袭性的肿瘤是脑恶性肿瘤,这种疾病的四级患者寿命很短。因此,医疗计划可能是改善患者福祉的关键一步。诊断和治疗都是医疗计划的一部分。脑肿瘤通常采用磁共振成像(MRI)、正电子发射断层扫描(PET)和计算机断层扫描(CT)成像。本文利用深度学习方法,提出了脑肿瘤的多模态融合成像与分类和分割。使用三种不同类型的像素级融合方法,将相同切片(脑膜瘤和肉瘤的 308 个切片)的 MRI 和 CT 脑肿瘤图像合并在一起。使用提出的 Tumnet 技术对肿瘤的存在/不存在进行分类,并找出相应的肿瘤区域。在另一种情况下,Tumnet 也适用于单模态 MRI/CT(561 个图像切片)分类。所提出的 Tumnet 有 5 个卷积层、3 个带 ReLU 激活函数的池化层和 3 个全连接层。MRI-CT 图像平均法的一阶统计融合指标为:组织 SSIM 为 83%,骨骼 SSIM 为 84%,准确度为 90%,灵敏度为 96%,特异度为 95%;二阶统计融合指标为:融合图像的标准偏差为 79%,熵为 0.99。熵值证实了融合图像中存在附加特征。建议的 Tumnet 灵敏度为 96%,准确度为 98%,特异度为 99%,归一化平均值为 0.75,标准偏差为 0.4,方差为 0.16,熵为 0.90。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal Brain Tumor Classification Using Convolutional Tumnet Architecture
The most common and aggressive tumor is brain malignancy, which has a short life span in the fourth grade of the disease. As a result, the medical plan may be a crucial step toward improving the well-being of a patient. Both diagnosis and therapy are part of the medical plan. Brain tumors are commonly imaged with magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). In this paper, multimodal fused imaging with classification and segmentation for brain tumors was proposed using the deep learning method. The MRI and CT brain tumor images of the same slices (308 slices of meningioma and sarcoma) are combined using three different types of pixel-level fusion methods. The presence/absence of a tumor is classified using the proposed Tumnet technique, and the tumor area is found accordingly. In the other case, Tumnet is also applied for single-modal MRI/CT (561 image slices) for classification. The proposed Tumnet was modeled with 5 convolutional layers, 3 pooling layers with ReLU activation function, and 3 fully connected layers. The first-order statistical fusion metrics for an average method of MRI-CT images are obtained as SSIM tissue at 83%, SSIM bone at 84%, accuracy at 90%, sensitivity at 96%, and specificity at 95%, and the second-order statistical fusion metrics are obtained as the standard deviation of fused images at 79% and entropy at 0.99. The entropy value confirms the presence of additional features in the fused image. The proposed Tumnet yields a sensitivity of 96%, an accuracy of 98%, a specificity of 99%, normalized values of the mean of 0.75, a standard deviation of 0.4, a variance of 0.16, and an entropy of 0.90.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioural Neurology
Behavioural Neurology 医学-临床神经学
CiteScore
5.40
自引率
3.60%
发文量
52
审稿时长
>12 weeks
期刊介绍: Behavioural Neurology is a peer-reviewed, Open Access journal which publishes original research articles, review articles and clinical studies based on various diseases and syndromes in behavioural neurology. The aim of the journal is to provide a platform for researchers and clinicians working in various fields of neurology including cognitive neuroscience, neuropsychology and neuropsychiatry. Topics of interest include: ADHD Aphasia Autism Alzheimer’s Disease Behavioural Disorders Dementia Epilepsy Multiple Sclerosis Parkinson’s Disease Psychosis Stroke Traumatic brain injury.
期刊最新文献
Comparative Analysis of Cognitive and Psychiatric Functioning in People With Cushing's Disease in Biochemical Remission and People With Nonfunctioning Adenomas. Association Between Dietary Fiber and the Severity of Depression Symptoms. Gender Differences in Amplitude of Low-Frequency Fluctuation Alterations in Healthy Volunteers by Acupuncture on Left "LI 15": A Resting-State fMRI Study. Quercetin Attenuates Oxidative Stress and Apoptosis in Brain Tissue of APP/PS1 Double Transgenic AD Mice by Regulating Keap1/Nrf2/HO-1 Pathway to Improve Cognitive Impairment. Optogenetics Neuromodulation of the Nose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1