Wajeeha Nasar, Ricardo da Silva Torres, Odd Erik Gundersen, Anniken Susanne Thoresen Karlsen
{"title":"通过基于案例和概念的检索改进搜救规划和资源分配","authors":"Wajeeha Nasar, Ricardo da Silva Torres, Odd Erik Gundersen, Anniken Susanne Thoresen Karlsen","doi":"10.1007/s10844-024-00861-0","DOIUrl":null,"url":null,"abstract":"<p>The need for effective and efficient search and rescue operations is more important than ever as the frequency and severity of disasters increase due to the escalating effects of climate change. Recognizing the value of personal knowledge and past experiences of experts, in this paper, we present findings of an investigation of how past knowledge and experts’ experiences can be effectively integrated with current search and rescue practices to improve rescue planning and resource allocation. A special focus is on investigating and demonstrating the potential associated with integrating knowledge graphs and case-based reasoning as a viable approach for search and rescue decision support. As part of our investigation, we have implemented a demonstrator system using a Norwegian search and rescue dataset and case-based and concept-based similarity retrieval. The main contribution of the paper is insight into how case-based and concept-based retrieval services can be designed to improve the effectiveness of search and rescue planning. To evaluate the validity of ranked cases in terms of how they align with the existing knowledge and insights of search and rescue experts, we use evaluation measures such as precision and recall. In our evaluation, we observed that attributes, such as the rescue operation type, have high precision, while the precision associated with the objects involved is relatively low. Central findings from our evaluation process are that knowledge-based creation, as well as case- and concept-based similarity retrieval services, can be beneficial in optimizing search and rescue planning time and allocating appropriate resources according to search and rescue incident descriptions.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"17 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving search and rescue planning and resource allocation through case-based and concept-based retrieval\",\"authors\":\"Wajeeha Nasar, Ricardo da Silva Torres, Odd Erik Gundersen, Anniken Susanne Thoresen Karlsen\",\"doi\":\"10.1007/s10844-024-00861-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The need for effective and efficient search and rescue operations is more important than ever as the frequency and severity of disasters increase due to the escalating effects of climate change. Recognizing the value of personal knowledge and past experiences of experts, in this paper, we present findings of an investigation of how past knowledge and experts’ experiences can be effectively integrated with current search and rescue practices to improve rescue planning and resource allocation. A special focus is on investigating and demonstrating the potential associated with integrating knowledge graphs and case-based reasoning as a viable approach for search and rescue decision support. As part of our investigation, we have implemented a demonstrator system using a Norwegian search and rescue dataset and case-based and concept-based similarity retrieval. The main contribution of the paper is insight into how case-based and concept-based retrieval services can be designed to improve the effectiveness of search and rescue planning. To evaluate the validity of ranked cases in terms of how they align with the existing knowledge and insights of search and rescue experts, we use evaluation measures such as precision and recall. In our evaluation, we observed that attributes, such as the rescue operation type, have high precision, while the precision associated with the objects involved is relatively low. Central findings from our evaluation process are that knowledge-based creation, as well as case- and concept-based similarity retrieval services, can be beneficial in optimizing search and rescue planning time and allocating appropriate resources according to search and rescue incident descriptions.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-024-00861-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00861-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improving search and rescue planning and resource allocation through case-based and concept-based retrieval
The need for effective and efficient search and rescue operations is more important than ever as the frequency and severity of disasters increase due to the escalating effects of climate change. Recognizing the value of personal knowledge and past experiences of experts, in this paper, we present findings of an investigation of how past knowledge and experts’ experiences can be effectively integrated with current search and rescue practices to improve rescue planning and resource allocation. A special focus is on investigating and demonstrating the potential associated with integrating knowledge graphs and case-based reasoning as a viable approach for search and rescue decision support. As part of our investigation, we have implemented a demonstrator system using a Norwegian search and rescue dataset and case-based and concept-based similarity retrieval. The main contribution of the paper is insight into how case-based and concept-based retrieval services can be designed to improve the effectiveness of search and rescue planning. To evaluate the validity of ranked cases in terms of how they align with the existing knowledge and insights of search and rescue experts, we use evaluation measures such as precision and recall. In our evaluation, we observed that attributes, such as the rescue operation type, have high precision, while the precision associated with the objects involved is relatively low. Central findings from our evaluation process are that knowledge-based creation, as well as case- and concept-based similarity retrieval services, can be beneficial in optimizing search and rescue planning time and allocating appropriate resources according to search and rescue incident descriptions.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.