用磁性图案增强软致动器的性能

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-05-30 DOI:10.1002/admt.202302142
Svenja Hermann, Pauline Butaud, Jean-François Manceau, Gaël Chevallier, Christophe Espanet
{"title":"用磁性图案增强软致动器的性能","authors":"Svenja Hermann,&nbsp;Pauline Butaud,&nbsp;Jean-François Manceau,&nbsp;Gaël Chevallier,&nbsp;Christophe Espanet","doi":"10.1002/admt.202302142","DOIUrl":null,"url":null,"abstract":"<p>This study presents a concept for a straightforward method to enhance the actuation performances of magneto-active elastomer membranes. The concept is based on a characteristic magnetization pattern and offers a solution to two major difficulties in the actuation of thin and mechanically soft magnetic actuators: the localization of actuation forces and the self-demagnetization. After the magnetization process, the membrane presents two regions with an oppositely oriented out-of-plane magnetization. The magnetized regions are separated by a transition zone which is called magnetic pole transition. Experimental investigations reveal a high magnetic flux density near the pole transition—even in the center of bidirectionally magnetized membranes—whereas the magnetic flux density of a uniformly magnetized membrane decreases toward the center. In additional experiments, membranes with both magnetization patterns are actuated by stiff permanent magnets. The resulting out-of-plane displacement of the bidirectionally magnetized membrane exceeds the displacement of the unidirectionally magnetized membrane by far. The investigations demonstrate that this enhancement stems from the presence of the magnetic pole transition. All experiments are reproduced using magnetic and magneto-mechanical numerical models; a good accordance between the results is achieved.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202302142","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Performance of Soft Actuators with Magnetic Patterns\",\"authors\":\"Svenja Hermann,&nbsp;Pauline Butaud,&nbsp;Jean-François Manceau,&nbsp;Gaël Chevallier,&nbsp;Christophe Espanet\",\"doi\":\"10.1002/admt.202302142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a concept for a straightforward method to enhance the actuation performances of magneto-active elastomer membranes. The concept is based on a characteristic magnetization pattern and offers a solution to two major difficulties in the actuation of thin and mechanically soft magnetic actuators: the localization of actuation forces and the self-demagnetization. After the magnetization process, the membrane presents two regions with an oppositely oriented out-of-plane magnetization. The magnetized regions are separated by a transition zone which is called magnetic pole transition. Experimental investigations reveal a high magnetic flux density near the pole transition—even in the center of bidirectionally magnetized membranes—whereas the magnetic flux density of a uniformly magnetized membrane decreases toward the center. In additional experiments, membranes with both magnetization patterns are actuated by stiff permanent magnets. The resulting out-of-plane displacement of the bidirectionally magnetized membrane exceeds the displacement of the unidirectionally magnetized membrane by far. The investigations demonstrate that this enhancement stems from the presence of the magnetic pole transition. All experiments are reproduced using magnetic and magneto-mechanical numerical models; a good accordance between the results is achieved.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202302142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302142\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302142","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个概念,即采用一种直接的方法来提高磁活性弹性体膜的致动性能。该概念以特征磁化模式为基础,为薄型机械软磁致动器的两个主要难题提供了解决方案:致动力的定位和自消磁。磁化过程结束后,薄膜呈现出两个方向相反的平面外磁化区域。磁化区域之间有一个过渡区,称为磁极过渡区。实验研究表明,磁极过渡区附近的磁通密度很高,甚至在双向磁化膜的中心也是如此,而均匀磁化膜的磁通密度会向中心降低。在其他实验中,两种磁化模式的膜都由坚硬的永久磁铁驱动。双向磁化膜产生的平面外位移远远超过单向磁化膜的位移。研究表明,这种增强源于磁极转换的存在。所有实验都使用磁性和磁力学数值模型进行了重现;结果之间非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the Performance of Soft Actuators with Magnetic Patterns

This study presents a concept for a straightforward method to enhance the actuation performances of magneto-active elastomer membranes. The concept is based on a characteristic magnetization pattern and offers a solution to two major difficulties in the actuation of thin and mechanically soft magnetic actuators: the localization of actuation forces and the self-demagnetization. After the magnetization process, the membrane presents two regions with an oppositely oriented out-of-plane magnetization. The magnetized regions are separated by a transition zone which is called magnetic pole transition. Experimental investigations reveal a high magnetic flux density near the pole transition—even in the center of bidirectionally magnetized membranes—whereas the magnetic flux density of a uniformly magnetized membrane decreases toward the center. In additional experiments, membranes with both magnetization patterns are actuated by stiff permanent magnets. The resulting out-of-plane displacement of the bidirectionally magnetized membrane exceeds the displacement of the unidirectionally magnetized membrane by far. The investigations demonstrate that this enhancement stems from the presence of the magnetic pole transition. All experiments are reproduced using magnetic and magneto-mechanical numerical models; a good accordance between the results is achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
Inkjet Printed Potentiometric Sensors for Nitrate Detection Directly in Soil enabled by a Hydrophilic Passivation Layer (Adv. Mater. Technol. 17/2024) Safety Through Visibility: Tracing Hydrogen in Colors with Highly Customizable and Flexibly Applicable Supraparticle Additives (Adv. Mater. Technol. 17/2024) Non-Contact Transfer Printing Enabled by an Ultrasonic Droplet Stamp (Adv. Mater. Technol. 17/2024) Large Area Ballistocardiography Enabled by Printed Piezoelectric Sensor Arrays on Elastomeric Substrates (Adv. Mater. Technol. 17/2024) Masthead: (Adv. Mater. Technol. 17/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1