Gangfan Zhong, Xiaozhe Hu, Ming Tang, Liuqiang Zhong
{"title":"通过带有黑森驱动阻尼和提霍诺夫正则化的微分方程实现快速凸优化","authors":"Gangfan Zhong, Xiaozhe Hu, Ming Tang, Liuqiang Zhong","doi":"10.1007/s10957-024-02462-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of second-order ordinary differential equations with Hessian-driven damping and Tikhonov regularization, which arises from the minimization of a smooth convex function in Hilbert spaces. Inspired by Attouch et al. (J Differ Equ 261:5734–5783, 2016), we establish that the function value along the solution trajectory converges to the optimal value, and prove that the convergence rate can be as fast as <span>\\(o(1/t^2)\\)</span>. By constructing proper energy function, we prove that the trajectory strongly converges to a minimizer of the objective function of minimum norm. Moreover, we propose a gradient-based optimization algorithm based on numerical discretization, and demonstrate its effectiveness in numerical experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Convex Optimization via Differential Equation with Hessian-Driven Damping and Tikhonov Regularization\",\"authors\":\"Gangfan Zhong, Xiaozhe Hu, Ming Tang, Liuqiang Zhong\",\"doi\":\"10.1007/s10957-024-02462-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a class of second-order ordinary differential equations with Hessian-driven damping and Tikhonov regularization, which arises from the minimization of a smooth convex function in Hilbert spaces. Inspired by Attouch et al. (J Differ Equ 261:5734–5783, 2016), we establish that the function value along the solution trajectory converges to the optimal value, and prove that the convergence rate can be as fast as <span>\\\\(o(1/t^2)\\\\)</span>. By constructing proper energy function, we prove that the trajectory strongly converges to a minimizer of the objective function of minimum norm. Moreover, we propose a gradient-based optimization algorithm based on numerical discretization, and demonstrate its effectiveness in numerical experiments.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02462-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02462-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fast Convex Optimization via Differential Equation with Hessian-Driven Damping and Tikhonov Regularization
In this paper, we consider a class of second-order ordinary differential equations with Hessian-driven damping and Tikhonov regularization, which arises from the minimization of a smooth convex function in Hilbert spaces. Inspired by Attouch et al. (J Differ Equ 261:5734–5783, 2016), we establish that the function value along the solution trajectory converges to the optimal value, and prove that the convergence rate can be as fast as \(o(1/t^2)\). By constructing proper energy function, we prove that the trajectory strongly converges to a minimizer of the objective function of minimum norm. Moreover, we propose a gradient-based optimization algorithm based on numerical discretization, and demonstrate its effectiveness in numerical experiments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.