基于神经特征加权融合的多标签徽标识别和检索

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems Pub Date : 2024-05-28 DOI:10.1111/exsy.13627
Marisa Bernabeu, Antonio Javier Gallego, Antonio Pertusa
{"title":"基于神经特征加权融合的多标签徽标识别和检索","authors":"Marisa Bernabeu,&nbsp;Antonio Javier Gallego,&nbsp;Antonio Pertusa","doi":"10.1111/exsy.13627","DOIUrl":null,"url":null,"abstract":"<p>Classifying logo images is a challenging task as they contain elements such as text or shapes that can represent anything from known objects to abstract shapes. While the current state of the art for logo classification addresses the problem as a multi-class task focusing on a single characteristic, logos can have several simultaneous labels, such as different colours. This work proposes a method that allows visually similar logos to be classified and searched from a set of data according to their shape, colour, commercial sector, semantics, general characteristics, or a combination of features selected by the user. Unlike previous approaches, the proposal employs a series of multi-label deep neural networks specialized in specific attributes and combines the obtained features to perform the similarity search. To delve into the classification system, different existing logo topologies are compared and some of their problems are analysed, such as the incomplete labelling that trademark registration databases usually contain. The proposal is evaluated considering 76,000 logos (seven times more than previous approaches) from the European Union Trademarks dataset, which is organized hierarchically using the Vienna ontology. Overall, experimentation attains reliable quantitative and qualitative results, reducing the normalized average rank error of the state-of-the-art from 0.040 to 0.018 for the Trademark Image Retrieval task. Finally, given that the semantics of logos can often be subjective, graphic design students and professionals were surveyed. Results show that the proposed methodology provides better labelling than a human expert operator, improving the label ranking average precision from 0.53 to 0.68.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13627","citationCount":"0","resultStr":"{\"title\":\"Multi-label logo recognition and retrieval based on weighted fusion of neural features\",\"authors\":\"Marisa Bernabeu,&nbsp;Antonio Javier Gallego,&nbsp;Antonio Pertusa\",\"doi\":\"10.1111/exsy.13627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Classifying logo images is a challenging task as they contain elements such as text or shapes that can represent anything from known objects to abstract shapes. While the current state of the art for logo classification addresses the problem as a multi-class task focusing on a single characteristic, logos can have several simultaneous labels, such as different colours. This work proposes a method that allows visually similar logos to be classified and searched from a set of data according to their shape, colour, commercial sector, semantics, general characteristics, or a combination of features selected by the user. Unlike previous approaches, the proposal employs a series of multi-label deep neural networks specialized in specific attributes and combines the obtained features to perform the similarity search. To delve into the classification system, different existing logo topologies are compared and some of their problems are analysed, such as the incomplete labelling that trademark registration databases usually contain. The proposal is evaluated considering 76,000 logos (seven times more than previous approaches) from the European Union Trademarks dataset, which is organized hierarchically using the Vienna ontology. Overall, experimentation attains reliable quantitative and qualitative results, reducing the normalized average rank error of the state-of-the-art from 0.040 to 0.018 for the Trademark Image Retrieval task. Finally, given that the semantics of logos can often be subjective, graphic design students and professionals were surveyed. Results show that the proposed methodology provides better labelling than a human expert operator, improving the label ranking average precision from 0.53 to 0.68.</p>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13627\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13627\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13627","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对徽标图像进行分类是一项极具挑战性的任务,因为徽标图像包含文字或形状等元素,这些元素可以代表从已知物体到抽象形状的任何物体。虽然目前的徽标分类技术是将这一问题作为一项多类任务来处理的,重点关注单一特征,但徽标可能同时具有多个标签,例如不同的颜色。本作品提出了一种方法,可根据徽标的形状、颜色、商业领域、语义、一般特征或用户选择的特征组合,从一组数据中对视觉上相似的徽标进行分类和搜索。与以往的方法不同,该提案采用了一系列专门针对特定属性的多标签深度神经网络,并结合所获得的特征来执行相似性搜索。为了深入探讨该分类系统,我们对现有的不同徽标拓扑结构进行了比较,并分析了其中的一些问题,例如商标注册数据库通常包含的不完整标签。通过对欧盟商标数据集中的 76000 个标识(比之前的方法多七倍)进行评估,并使用维也纳本体进行分层组织。总体而言,实验取得了可靠的定量和定性结果,在商标图像检索任务中,最新方法的归一化平均等级误差从 0.040 降至 0.018。最后,鉴于徽标的语义通常具有主观性,我们对平面设计专业的学生和专业人员进行了调查。结果表明,与人类专家操作员相比,所提出的方法能提供更好的标注效果,将标签排序平均精度从 0.53 提高到 0.68。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-label logo recognition and retrieval based on weighted fusion of neural features

Classifying logo images is a challenging task as they contain elements such as text or shapes that can represent anything from known objects to abstract shapes. While the current state of the art for logo classification addresses the problem as a multi-class task focusing on a single characteristic, logos can have several simultaneous labels, such as different colours. This work proposes a method that allows visually similar logos to be classified and searched from a set of data according to their shape, colour, commercial sector, semantics, general characteristics, or a combination of features selected by the user. Unlike previous approaches, the proposal employs a series of multi-label deep neural networks specialized in specific attributes and combines the obtained features to perform the similarity search. To delve into the classification system, different existing logo topologies are compared and some of their problems are analysed, such as the incomplete labelling that trademark registration databases usually contain. The proposal is evaluated considering 76,000 logos (seven times more than previous approaches) from the European Union Trademarks dataset, which is organized hierarchically using the Vienna ontology. Overall, experimentation attains reliable quantitative and qualitative results, reducing the normalized average rank error of the state-of-the-art from 0.040 to 0.018 for the Trademark Image Retrieval task. Finally, given that the semantics of logos can often be subjective, graphic design students and professionals were surveyed. Results show that the proposed methodology provides better labelling than a human expert operator, improving the label ranking average precision from 0.53 to 0.68.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
期刊最新文献
A comprehensive survey on deep learning‐based intrusion detection systems in Internet of Things (IoT) MTFDN: An image copy‐move forgery detection method based on multi‐task learning STP‐CNN: Selection of transfer parameters in convolutional neural networks Label distribution learning for compound facial expression recognition in‐the‐wild: A comparative study Federated learning‐driven dual blockchain for data sharing and reputation management in Internet of medical things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1