{"title":"基于多芯光纤的空间复用弹性光网络中用于串扰管理的路由、调制、核心和频谱分配技术","authors":"Baljinder Singh Heera, Anjali Sharma, Varsha Lohani, Yatindra Nath Singh","doi":"10.1007/s11107-024-01021-8","DOIUrl":null,"url":null,"abstract":"<p>Multi-core fiber (MCF) based space-division multiplexed elastic optical networks (SDM-EON) is a promising technology to scale the capacity of optical transport networks. MCF-based SDM-EONs can potentially increase the network’s capacity with reduced cost and/or energy per bit. Crosstalk among the cores of MCF limits the efficient utilization of the available spectrum. Keeping the inter-core crosstalk below a threshold before establishing a new lightpath in the network is crucial. In this work, we have studied the impact of crosstalk while setting up flexible lightpaths in the MCF-based SDM-EON. Depending on the severity of inter-core crosstalk, we emphasize the importance of designing suitable resource allocation techniques, such as core selection, spectrum slot finding and crosstalk computation. In this work, we test the performance of various resource allocation algorithms in the presence of crosstalk. To circumvent the impact of crosstalk on the performance of MCF-based SDM-EONs, we propose two dynamic resource allocation algorithms, D-XT-Aware RMCSA and CR-FA-XT-Aware RMCSA. Extensive simulations are performed on three realistic network topologies to study the performance of benchmark and proposed algorithms under dynamic traffic conditions. Based on simulation results, we suggest RMCSA techniques suitable against the severity of inter-core crosstalk for MCF-based SDM-EONs.</p>","PeriodicalId":20057,"journal":{"name":"Photonic Network Communications","volume":"44 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Routing, modulation, core and spectrum assignment techniques for crosstalk management in multi-core fiber based spatially multiplexed elastic optical networks\",\"authors\":\"Baljinder Singh Heera, Anjali Sharma, Varsha Lohani, Yatindra Nath Singh\",\"doi\":\"10.1007/s11107-024-01021-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-core fiber (MCF) based space-division multiplexed elastic optical networks (SDM-EON) is a promising technology to scale the capacity of optical transport networks. MCF-based SDM-EONs can potentially increase the network’s capacity with reduced cost and/or energy per bit. Crosstalk among the cores of MCF limits the efficient utilization of the available spectrum. Keeping the inter-core crosstalk below a threshold before establishing a new lightpath in the network is crucial. In this work, we have studied the impact of crosstalk while setting up flexible lightpaths in the MCF-based SDM-EON. Depending on the severity of inter-core crosstalk, we emphasize the importance of designing suitable resource allocation techniques, such as core selection, spectrum slot finding and crosstalk computation. In this work, we test the performance of various resource allocation algorithms in the presence of crosstalk. To circumvent the impact of crosstalk on the performance of MCF-based SDM-EONs, we propose two dynamic resource allocation algorithms, D-XT-Aware RMCSA and CR-FA-XT-Aware RMCSA. Extensive simulations are performed on three realistic network topologies to study the performance of benchmark and proposed algorithms under dynamic traffic conditions. Based on simulation results, we suggest RMCSA techniques suitable against the severity of inter-core crosstalk for MCF-based SDM-EONs.</p>\",\"PeriodicalId\":20057,\"journal\":{\"name\":\"Photonic Network Communications\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonic Network Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11107-024-01021-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonic Network Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11107-024-01021-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Routing, modulation, core and spectrum assignment techniques for crosstalk management in multi-core fiber based spatially multiplexed elastic optical networks
Multi-core fiber (MCF) based space-division multiplexed elastic optical networks (SDM-EON) is a promising technology to scale the capacity of optical transport networks. MCF-based SDM-EONs can potentially increase the network’s capacity with reduced cost and/or energy per bit. Crosstalk among the cores of MCF limits the efficient utilization of the available spectrum. Keeping the inter-core crosstalk below a threshold before establishing a new lightpath in the network is crucial. In this work, we have studied the impact of crosstalk while setting up flexible lightpaths in the MCF-based SDM-EON. Depending on the severity of inter-core crosstalk, we emphasize the importance of designing suitable resource allocation techniques, such as core selection, spectrum slot finding and crosstalk computation. In this work, we test the performance of various resource allocation algorithms in the presence of crosstalk. To circumvent the impact of crosstalk on the performance of MCF-based SDM-EONs, we propose two dynamic resource allocation algorithms, D-XT-Aware RMCSA and CR-FA-XT-Aware RMCSA. Extensive simulations are performed on three realistic network topologies to study the performance of benchmark and proposed algorithms under dynamic traffic conditions. Based on simulation results, we suggest RMCSA techniques suitable against the severity of inter-core crosstalk for MCF-based SDM-EONs.
期刊介绍:
This journal publishes papers involving optical communication networks. Coverage includes network and system technologies; network and system architectures; network access and control; network design, planning, and operation; interworking; and application design for an optical infrastructure
This journal publishes high-quality, peer-reviewed papers presenting research results, major achievements, and trends involving all aspects of optical network communications.
Among the topics explored are transport, access, and customer premises networks; local, regional, and global networks; transoceanic and undersea networks; optical transparent networks; WDM, HWDM, and OTDM networks and more.