Tae Eon Kim, Sunghoon Jung, Soo Hyun Lee, ChaeWon Mun, Eun-Yeon Byeon, Jun-Yeong Yang, Jucheol Park, Seunghun Lee, Heemin Kang, Sung-Gyu Park
{"title":"开发用于大规模生产等离子传感芯片的一步式卷对卷系统,其中包含真空溅射技术","authors":"Tae Eon Kim, Sunghoon Jung, Soo Hyun Lee, ChaeWon Mun, Eun-Yeon Byeon, Jun-Yeong Yang, Jucheol Park, Seunghun Lee, Heemin Kang, Sung-Gyu Park","doi":"10.1063/5.0211084","DOIUrl":null,"url":null,"abstract":"The trade-off relationship between cost and performance is a major challenge in the development of surface-enhanced Raman spectroscopy (SERS) sensors for practical applications. We propose a roll-to-roll system with incorporated vacuum sputtering to manufacture Ag-coated nanodimples (Ag/NDs) on A4-scale films in a single step. The Ag/ND SERS platforms were prepared via O2 ion beam sputtering and Ag sputtering deposition. The concave three-dimensional spaces in the Ag/NDs functioned as hotspots, and their optimal fabrication conditions were investigated with two variables: moving speed and Ag thickness. The entire process was automated, which resulted in highly consistent optical responses (i.e., relative standard deviation of ∼10%). The activation of plasmonic hotspots was demonstrated by electric-field profiles calculated via the finite-difference time-domain method. The wavelength dependency of the Ag/ND platforms was also examined by dark-field microscopy. The results indicate that the developed engineering technique for the large-scale production of Ag/ND plasmonic chips would likely be competitive in the commercial market.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"21 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of one-step roll-to-roll system with incorporated vacuum sputtering for large-scale production of plasmonic sensing chips\",\"authors\":\"Tae Eon Kim, Sunghoon Jung, Soo Hyun Lee, ChaeWon Mun, Eun-Yeon Byeon, Jun-Yeong Yang, Jucheol Park, Seunghun Lee, Heemin Kang, Sung-Gyu Park\",\"doi\":\"10.1063/5.0211084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trade-off relationship between cost and performance is a major challenge in the development of surface-enhanced Raman spectroscopy (SERS) sensors for practical applications. We propose a roll-to-roll system with incorporated vacuum sputtering to manufacture Ag-coated nanodimples (Ag/NDs) on A4-scale films in a single step. The Ag/ND SERS platforms were prepared via O2 ion beam sputtering and Ag sputtering deposition. The concave three-dimensional spaces in the Ag/NDs functioned as hotspots, and their optimal fabrication conditions were investigated with two variables: moving speed and Ag thickness. The entire process was automated, which resulted in highly consistent optical responses (i.e., relative standard deviation of ∼10%). The activation of plasmonic hotspots was demonstrated by electric-field profiles calculated via the finite-difference time-domain method. The wavelength dependency of the Ag/ND platforms was also examined by dark-field microscopy. The results indicate that the developed engineering technique for the large-scale production of Ag/ND plasmonic chips would likely be competitive in the commercial market.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0211084\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0211084","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在开发实际应用的表面增强拉曼光谱(SERS)传感器时,成本与性能之间的权衡关系是一大挑战。我们提出了一种结合真空溅射的辊对辊系统,可在 A4 级薄膜上一步制备 Ag 涂层纳米微粒(Ag/ND)。Ag/ND SERS 平台是通过 O2 离子束溅射和 Ag 溅射沉积制备的。Ag/ND 中的凹面三维空间起到了热点的作用,通过两个变量:移动速度和 Ag 厚度,研究了其最佳制备条件。整个过程都是自动化的,因此产生了高度一致的光学响应(即相对标准偏差∼10%)。通过有限差分时域法计算的电场曲线证明了等离子热点的激活。此外,还通过暗场显微镜检查了 Ag/ND 平台的波长依赖性。结果表明,所开发的大规模生产 Ag/ND 等离子芯片的工程技术很可能在商业市场上具有竞争力。
Development of one-step roll-to-roll system with incorporated vacuum sputtering for large-scale production of plasmonic sensing chips
The trade-off relationship between cost and performance is a major challenge in the development of surface-enhanced Raman spectroscopy (SERS) sensors for practical applications. We propose a roll-to-roll system with incorporated vacuum sputtering to manufacture Ag-coated nanodimples (Ag/NDs) on A4-scale films in a single step. The Ag/ND SERS platforms were prepared via O2 ion beam sputtering and Ag sputtering deposition. The concave three-dimensional spaces in the Ag/NDs functioned as hotspots, and their optimal fabrication conditions were investigated with two variables: moving speed and Ag thickness. The entire process was automated, which resulted in highly consistent optical responses (i.e., relative standard deviation of ∼10%). The activation of plasmonic hotspots was demonstrated by electric-field profiles calculated via the finite-difference time-domain method. The wavelength dependency of the Ag/ND platforms was also examined by dark-field microscopy. The results indicate that the developed engineering technique for the large-scale production of Ag/ND plasmonic chips would likely be competitive in the commercial market.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.