{"title":"FEDM:基于卷积神经网络的受精卵检测模型。","authors":"Z Gong, M Wang, J Song","doi":"10.1080/00071668.2024.2356656","DOIUrl":null,"url":null,"abstract":"<p><p>1. The production of goose eggs holds significant economic value on a global scale and the quality of fertilised eggs is crucial for the successful hatching and sustained development of the poultry industry. Developing a low-cost fertilised egg identification system that is suitable for large-scale testing is of great significance. However, existing methods are expensive and have high environmental detection requirements, which limit their promotion.2. To address this issue, an improved object detection model called FEDM based on YOLOv5 is proposed, which has been shown to be outstanding among nine models. The main network of YOLOv5 is enhanced with the SENet attention mechanism to improve the feature selection capability. The C3_DCNv3 is introduced to enhance the detection ability of blood vessels in the fertilised eggs. The application of Dyhead significantly improved the representation capacity of the object detection head without any computational overhead. The loss function is replaced with MPDIoU to simplify the calculation process.3. Experimental results from the augmented dataset showed that the average precision of the FEDM reached 96.7%, which is a 5.5% improvement compared to the YOLOv5s model. FEDM exhibited better detection performance on eggs from different shooting angles than the YOLOv5 algorithm and achieves high detection speed.4. The FEDM secured significant advancement on the detection rate of the fourth day fertilised egg compared to the YOLOv5 algorithm. Based on this result, savings and space utilisation can be made, which has practical application value.</p>","PeriodicalId":9322,"journal":{"name":"British Poultry Science","volume":" ","pages":"546-558"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FEDM: a convolutional neural network based fertilised egg detection model.\",\"authors\":\"Z Gong, M Wang, J Song\",\"doi\":\"10.1080/00071668.2024.2356656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1. The production of goose eggs holds significant economic value on a global scale and the quality of fertilised eggs is crucial for the successful hatching and sustained development of the poultry industry. Developing a low-cost fertilised egg identification system that is suitable for large-scale testing is of great significance. However, existing methods are expensive and have high environmental detection requirements, which limit their promotion.2. To address this issue, an improved object detection model called FEDM based on YOLOv5 is proposed, which has been shown to be outstanding among nine models. The main network of YOLOv5 is enhanced with the SENet attention mechanism to improve the feature selection capability. The C3_DCNv3 is introduced to enhance the detection ability of blood vessels in the fertilised eggs. The application of Dyhead significantly improved the representation capacity of the object detection head without any computational overhead. The loss function is replaced with MPDIoU to simplify the calculation process.3. Experimental results from the augmented dataset showed that the average precision of the FEDM reached 96.7%, which is a 5.5% improvement compared to the YOLOv5s model. FEDM exhibited better detection performance on eggs from different shooting angles than the YOLOv5 algorithm and achieves high detection speed.4. The FEDM secured significant advancement on the detection rate of the fourth day fertilised egg compared to the YOLOv5 algorithm. Based on this result, savings and space utilisation can be made, which has practical application value.</p>\",\"PeriodicalId\":9322,\"journal\":{\"name\":\"British Poultry Science\",\"volume\":\" \",\"pages\":\"546-558\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/00071668.2024.2356656\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00071668.2024.2356656","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
FEDM: a convolutional neural network based fertilised egg detection model.
1. The production of goose eggs holds significant economic value on a global scale and the quality of fertilised eggs is crucial for the successful hatching and sustained development of the poultry industry. Developing a low-cost fertilised egg identification system that is suitable for large-scale testing is of great significance. However, existing methods are expensive and have high environmental detection requirements, which limit their promotion.2. To address this issue, an improved object detection model called FEDM based on YOLOv5 is proposed, which has been shown to be outstanding among nine models. The main network of YOLOv5 is enhanced with the SENet attention mechanism to improve the feature selection capability. The C3_DCNv3 is introduced to enhance the detection ability of blood vessels in the fertilised eggs. The application of Dyhead significantly improved the representation capacity of the object detection head without any computational overhead. The loss function is replaced with MPDIoU to simplify the calculation process.3. Experimental results from the augmented dataset showed that the average precision of the FEDM reached 96.7%, which is a 5.5% improvement compared to the YOLOv5s model. FEDM exhibited better detection performance on eggs from different shooting angles than the YOLOv5 algorithm and achieves high detection speed.4. The FEDM secured significant advancement on the detection rate of the fourth day fertilised egg compared to the YOLOv5 algorithm. Based on this result, savings and space utilisation can be made, which has practical application value.
期刊介绍:
From its first volume in 1960, British Poultry Science has been a leading international journal for poultry scientists and advisers to the poultry industry throughout the world. Over 60% of the independently refereed papers published originate outside the UK. Most typically they report the results of biological studies with an experimental approach which either make an original contribution to fundamental science or are of obvious application to the industry. Subjects which are covered include: anatomy, embryology, biochemistry, biophysics, physiology, reproduction and genetics, behaviour, microbiology, endocrinology, nutrition, environmental science, food science, feeding stuffs and feeding, management and housing welfare, breeding, hatching, poultry meat and egg yields and quality.Papers that adopt a modelling approach or describe the scientific background to new equipment or apparatus directly relevant to the industry are also published. The journal also features rapid publication of Short Communications. Summaries of papers presented at the Spring Meeting of the UK Branch of the WPSA are published in British Poultry Abstracts .