用于增强肺癌早期检测的无细胞 DNA 片段组测定的临床验证。

IF 29.7 1区 医学 Q1 ONCOLOGY Cancer discovery Pub Date : 2024-11-01 DOI:10.1158/2159-8290.CD-24-0519
Peter J Mazzone, Peter B Bach, Jacob Carey, Caitlin A Schonewolf, Katalin Bognar, Manmeet S Ahluwalia, Marcia Cruz-Correa, David Gierada, Sonali Kotagiri, Kathryn Lloyd, Fabien Maldonado, Jesse D Ortendahl, Lecia V Sequist, Gerard A Silvestri, Nichole Tanner, Jeffrey C Thompson, Anil Vachani, Kwok-Kin Wong, Ali H Zaidi, Joseph Catallini, Ariel Gershman, Keith Lumbard, Laurel K Millberg, Jeff Nawrocki, Carter Portwood, Aakanksha Rangnekar, Carolina Campos Sheridan, Niti Trivedi, Tony Wu, Yuhua Zong, Lindsey Cotton, Allison Ryan, Christopher Cisar, Alessandro Leal, Nicholas Dracopoli, Robert B Scharpf, Victor E Velculescu, Luke R G Pike
{"title":"用于增强肺癌早期检测的无细胞 DNA 片段组测定的临床验证。","authors":"Peter J Mazzone, Peter B Bach, Jacob Carey, Caitlin A Schonewolf, Katalin Bognar, Manmeet S Ahluwalia, Marcia Cruz-Correa, David Gierada, Sonali Kotagiri, Kathryn Lloyd, Fabien Maldonado, Jesse D Ortendahl, Lecia V Sequist, Gerard A Silvestri, Nichole Tanner, Jeffrey C Thompson, Anil Vachani, Kwok-Kin Wong, Ali H Zaidi, Joseph Catallini, Ariel Gershman, Keith Lumbard, Laurel K Millberg, Jeff Nawrocki, Carter Portwood, Aakanksha Rangnekar, Carolina Campos Sheridan, Niti Trivedi, Tony Wu, Yuhua Zong, Lindsey Cotton, Allison Ryan, Christopher Cisar, Alessandro Leal, Nicholas Dracopoli, Robert B Scharpf, Victor E Velculescu, Luke R G Pike","doi":"10.1158/2159-8290.CD-24-0519","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer screening via annual low-dose computed tomography has poor adoption. We conducted a prospective case-control study among 958 individuals eligible for lung cancer screening to develop a blood-based lung cancer detection test that when positive is followed by a low-dose computed tomography. Changes in genome-wide cell-free DNA fragmentation profiles (fragmentomes) in peripheral blood reflected genomic and chromatin characteristics of lung cancer. We applied machine learning to fragmentome features to identify individuals who were more or less likely to have lung cancer. We trained the classifier using 576 cases and controls from study samples and validated it in a held-out group of 382 cases and controls. The validation demonstrated high sensitivity for lung cancer and consistency across demographic groups and comorbid conditions. Applying test performance to the screening eligible population in a 5-year model with modest utilization assumptions suggested the potential to prevent thousands of lung cancer deaths. Significance: Lung cancer screening has poor adoption. Our study describes the development and validation of a novel blood-based lung cancer screening test utilizing a highly affordable, low-coverage genome-wide sequencing platform to analyze cell-free DNA fragmentation patterns. The test could improve lung cancer screening rates leading to substantial public health benefits. See related commentary by Haber and Skates, p. 2025.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"2224-2242"},"PeriodicalIF":29.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical Validation of a Cell-Free DNA Fragmentome Assay for Augmentation of Lung Cancer Early Detection.\",\"authors\":\"Peter J Mazzone, Peter B Bach, Jacob Carey, Caitlin A Schonewolf, Katalin Bognar, Manmeet S Ahluwalia, Marcia Cruz-Correa, David Gierada, Sonali Kotagiri, Kathryn Lloyd, Fabien Maldonado, Jesse D Ortendahl, Lecia V Sequist, Gerard A Silvestri, Nichole Tanner, Jeffrey C Thompson, Anil Vachani, Kwok-Kin Wong, Ali H Zaidi, Joseph Catallini, Ariel Gershman, Keith Lumbard, Laurel K Millberg, Jeff Nawrocki, Carter Portwood, Aakanksha Rangnekar, Carolina Campos Sheridan, Niti Trivedi, Tony Wu, Yuhua Zong, Lindsey Cotton, Allison Ryan, Christopher Cisar, Alessandro Leal, Nicholas Dracopoli, Robert B Scharpf, Victor E Velculescu, Luke R G Pike\",\"doi\":\"10.1158/2159-8290.CD-24-0519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer screening via annual low-dose computed tomography has poor adoption. We conducted a prospective case-control study among 958 individuals eligible for lung cancer screening to develop a blood-based lung cancer detection test that when positive is followed by a low-dose computed tomography. Changes in genome-wide cell-free DNA fragmentation profiles (fragmentomes) in peripheral blood reflected genomic and chromatin characteristics of lung cancer. We applied machine learning to fragmentome features to identify individuals who were more or less likely to have lung cancer. We trained the classifier using 576 cases and controls from study samples and validated it in a held-out group of 382 cases and controls. The validation demonstrated high sensitivity for lung cancer and consistency across demographic groups and comorbid conditions. Applying test performance to the screening eligible population in a 5-year model with modest utilization assumptions suggested the potential to prevent thousands of lung cancer deaths. Significance: Lung cancer screening has poor adoption. Our study describes the development and validation of a novel blood-based lung cancer screening test utilizing a highly affordable, low-coverage genome-wide sequencing platform to analyze cell-free DNA fragmentation patterns. The test could improve lung cancer screening rates leading to substantial public health benefits. See related commentary by Haber and Skates, p. 2025.</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":\" \",\"pages\":\"2224-2242\"},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-24-0519\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-0519","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

每年通过低剂量计算机断层扫描(LDCT)进行肺癌筛查的采用率很低。我们在 958 名符合肺癌筛查条件的人中开展了一项前瞻性病例对照研究,以开发一种基于血液的肺癌检测试验,当检测结果呈阳性时再进行 LDCT 检查。外周血中全基因组无细胞DNA(cfDNA)片段图谱(片段组)的变化反映了肺癌的基因组和染色质特征。我们将机器学习应用于片段组特征,以确定哪些人患肺癌的可能性更大,哪些人患肺癌的可能性更小。我们使用研究样本中的 576 例病例和对照组对分类器进行了训练,然后在 382 例病例和对照组中进行了验证。验证结果表明,分类器对肺癌的灵敏度很高,而且在不同人口群体和合并症方面具有一致性。在一个五年期模型中,将测试结果应用于符合筛查条件的人群,并假定使用率不高,这表明该模型有可能预防数千例肺癌死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clinical Validation of a Cell-Free DNA Fragmentome Assay for Augmentation of Lung Cancer Early Detection.

Lung cancer screening via annual low-dose computed tomography has poor adoption. We conducted a prospective case-control study among 958 individuals eligible for lung cancer screening to develop a blood-based lung cancer detection test that when positive is followed by a low-dose computed tomography. Changes in genome-wide cell-free DNA fragmentation profiles (fragmentomes) in peripheral blood reflected genomic and chromatin characteristics of lung cancer. We applied machine learning to fragmentome features to identify individuals who were more or less likely to have lung cancer. We trained the classifier using 576 cases and controls from study samples and validated it in a held-out group of 382 cases and controls. The validation demonstrated high sensitivity for lung cancer and consistency across demographic groups and comorbid conditions. Applying test performance to the screening eligible population in a 5-year model with modest utilization assumptions suggested the potential to prevent thousands of lung cancer deaths. Significance: Lung cancer screening has poor adoption. Our study describes the development and validation of a novel blood-based lung cancer screening test utilizing a highly affordable, low-coverage genome-wide sequencing platform to analyze cell-free DNA fragmentation patterns. The test could improve lung cancer screening rates leading to substantial public health benefits. See related commentary by Haber and Skates, p. 2025.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
期刊最新文献
NOTCH1 drives sexually dimorphic immune responses in hepatocellular carcinoma. PKN2 is a dependency of the mesenchymal-like cancer cell state. The UBA1-STUB1 axis mediates cancer immune escape and resistance to checkpoint blockade Survivin promotes stem cell competence for skin cancer initiation Sympathetic Neurons Promote Small Cell Lung Cancer Through the Beta-2 Adrenergic Receptor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1