用于癌症类型预测的深度学习模型树立了新标准。

IF 29.7 1区 医学 Q1 ONCOLOGY Cancer discovery Pub Date : 2024-06-03 DOI:10.1158/2159-8290.CD-24-0280
Salil Garg
{"title":"用于癌症类型预测的深度学习模型树立了新标准。","authors":"Salil Garg","doi":"10.1158/2159-8290.CD-24-0280","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Classifying tumor types using machine learning approaches is not always trivial, particularly for challenging cases such as cancers of unknown primary. In this issue of Cancer Discovery, Darmofal and colleagues describe a new tool that uses information from a clinical sequencing panel to diagnose tumor type, and show that the model is particularly robust. See related article by Darmofal et al., p. 1064 (1).</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":null,"pages":null},"PeriodicalIF":29.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning Model for Cancer Type Prediction Sets a New Standard.\",\"authors\":\"Salil Garg\",\"doi\":\"10.1158/2159-8290.CD-24-0280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Classifying tumor types using machine learning approaches is not always trivial, particularly for challenging cases such as cancers of unknown primary. In this issue of Cancer Discovery, Darmofal and colleagues describe a new tool that uses information from a clinical sequencing panel to diagnose tumor type, and show that the model is particularly robust. See related article by Darmofal et al., p. 1064 (1).</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-24-0280\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-0280","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:使用机器学习方法对肿瘤类型进行分类并非总是轻而易举的事,尤其是对于原发灶不明的癌症等具有挑战性的病例。在本期《癌症发现》(Cancer Discovery)杂志上,Darmofal及其同事介绍了一种利用临床测序面板信息诊断肿瘤类型的新工具,并表明该模型特别稳健。请参阅 Darmofal 等人的相关文章,第 1064 页(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Model for Cancer Type Prediction Sets a New Standard.

Summary: Classifying tumor types using machine learning approaches is not always trivial, particularly for challenging cases such as cancers of unknown primary. In this issue of Cancer Discovery, Darmofal and colleagues describe a new tool that uses information from a clinical sequencing panel to diagnose tumor type, and show that the model is particularly robust. See related article by Darmofal et al., p. 1064 (1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
期刊最新文献
Clinical Validation of a Cell-Free DNA Fragmentome Assay for Augmentation of Lung Cancer Early Detection. The N6-methyladenosine Epitranscriptomic Landscape of Lung Adenocarcinoma. Single-Cell View of Tumor Microenvironment Gradients in Pleural Mesothelioma. A Classical Epithelial State Drives Acute Resistance to KRAS Inhibition in Pancreatic Cancer. Mechanisms of Resistance to Oncogenic KRAS Inhibition in Pancreatic Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1