Rishi J Desai, Marie C Bradley, Hana Lee, Efe Eworuke, Janick Weberpals, Richard Wyss, Sebastian Schneeweiss, Robert Ball
{"title":"基于模拟的偏差分析,用于评估设计非随机数据库研究时未测量混杂因素的影响。","authors":"Rishi J Desai, Marie C Bradley, Hana Lee, Efe Eworuke, Janick Weberpals, Richard Wyss, Sebastian Schneeweiss, Robert Ball","doi":"10.1093/aje/kwae102","DOIUrl":null,"url":null,"abstract":"<p><p>Unmeasured confounding is often raised as a source of potential bias during the design of nonrandomized studies, but quantifying such concerns is challenging. We developed a simulation-based approach to assess the potential impact of unmeasured confounding during the study design stage. The approach involved generation of hypothetical individual-level cohorts using realistic parameters, including a binary treatment (prevalence 25%), a time-to-event outcome (incidence 5%), 13 measured covariates, a binary unmeasured confounder (u1; 10%), and a binary measured \"proxy\" variable (p1) correlated with u1. Strengths of unmeasured confounding and correlations between u1 and p1 were varied in simulation scenarios. Treatment effects were estimated with (1) no adjustment, (2) adjustment for measured confounders (level 1), and (3) adjustment for measured confounders and their proxy (level 2). We computed absolute standardized mean differences in u1 and p1 and relative bias with each level of adjustment. Across all scenarios, level 2 adjustment led to improvement in the balance of u1, but this improvement was highly dependent on the correlation between u1 and p1. Level 2 adjustments also had lower relative bias than level 1 adjustments (in strong u1 scenarios: relative bias of 9.2%, 12.2%, and 13.5% at correlations of 0.7, 0.5, and 0.3, respectively, vs 16.4%, 15.8%, and 15.0% for level 1). An approach using simulated individual-level data is useful to explicitly convey the potential for bias due to unmeasured confounding while designing nonrandomized studies, and can be helpful in informing design choices. This article is part of a Special Collection on Pharmacoepidemiology.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":"1600-1608"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulation-based bias analysis to assess the impact of unmeasured confounding when designing nonrandomized database studies.\",\"authors\":\"Rishi J Desai, Marie C Bradley, Hana Lee, Efe Eworuke, Janick Weberpals, Richard Wyss, Sebastian Schneeweiss, Robert Ball\",\"doi\":\"10.1093/aje/kwae102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unmeasured confounding is often raised as a source of potential bias during the design of nonrandomized studies, but quantifying such concerns is challenging. We developed a simulation-based approach to assess the potential impact of unmeasured confounding during the study design stage. The approach involved generation of hypothetical individual-level cohorts using realistic parameters, including a binary treatment (prevalence 25%), a time-to-event outcome (incidence 5%), 13 measured covariates, a binary unmeasured confounder (u1; 10%), and a binary measured \\\"proxy\\\" variable (p1) correlated with u1. Strengths of unmeasured confounding and correlations between u1 and p1 were varied in simulation scenarios. Treatment effects were estimated with (1) no adjustment, (2) adjustment for measured confounders (level 1), and (3) adjustment for measured confounders and their proxy (level 2). We computed absolute standardized mean differences in u1 and p1 and relative bias with each level of adjustment. Across all scenarios, level 2 adjustment led to improvement in the balance of u1, but this improvement was highly dependent on the correlation between u1 and p1. Level 2 adjustments also had lower relative bias than level 1 adjustments (in strong u1 scenarios: relative bias of 9.2%, 12.2%, and 13.5% at correlations of 0.7, 0.5, and 0.3, respectively, vs 16.4%, 15.8%, and 15.0% for level 1). An approach using simulated individual-level data is useful to explicitly convey the potential for bias due to unmeasured confounding while designing nonrandomized studies, and can be helpful in informing design choices. This article is part of a Special Collection on Pharmacoepidemiology.</p>\",\"PeriodicalId\":7472,\"journal\":{\"name\":\"American journal of epidemiology\",\"volume\":\" \",\"pages\":\"1600-1608\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/aje/kwae102\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae102","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
A simulation-based bias analysis to assess the impact of unmeasured confounding when designing nonrandomized database studies.
Unmeasured confounding is often raised as a source of potential bias during the design of nonrandomized studies, but quantifying such concerns is challenging. We developed a simulation-based approach to assess the potential impact of unmeasured confounding during the study design stage. The approach involved generation of hypothetical individual-level cohorts using realistic parameters, including a binary treatment (prevalence 25%), a time-to-event outcome (incidence 5%), 13 measured covariates, a binary unmeasured confounder (u1; 10%), and a binary measured "proxy" variable (p1) correlated with u1. Strengths of unmeasured confounding and correlations between u1 and p1 were varied in simulation scenarios. Treatment effects were estimated with (1) no adjustment, (2) adjustment for measured confounders (level 1), and (3) adjustment for measured confounders and their proxy (level 2). We computed absolute standardized mean differences in u1 and p1 and relative bias with each level of adjustment. Across all scenarios, level 2 adjustment led to improvement in the balance of u1, but this improvement was highly dependent on the correlation between u1 and p1. Level 2 adjustments also had lower relative bias than level 1 adjustments (in strong u1 scenarios: relative bias of 9.2%, 12.2%, and 13.5% at correlations of 0.7, 0.5, and 0.3, respectively, vs 16.4%, 15.8%, and 15.0% for level 1). An approach using simulated individual-level data is useful to explicitly convey the potential for bias due to unmeasured confounding while designing nonrandomized studies, and can be helpful in informing design choices. This article is part of a Special Collection on Pharmacoepidemiology.
期刊介绍:
The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research.
It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.