布鲁顿酪氨酸激酶抑制剂相关心脏毒性:寻找预测性生物标志物和改进风险分层。

Q2 Medicine Oncotarget Pub Date : 2024-06-03 DOI:10.18632/oncotarget.28589
Jai N Patel, Jai Singh, Nilanjan Ghosh
{"title":"布鲁顿酪氨酸激酶抑制剂相关心脏毒性:寻找预测性生物标志物和改进风险分层。","authors":"Jai N Patel, Jai Singh, Nilanjan Ghosh","doi":"10.18632/oncotarget.28589","DOIUrl":null,"url":null,"abstract":"<p><p>Ibrutinib was the first Bruton's tyrosine kinase (BTK) inhibitor approved for the treatment of patients with chronic lymphocytic leukemia (CLL). While producing durable responses and prolonging survival, roughly 20-25% of patients experience dose limiting side effects, mostly consisting of cardiovascular toxicities like severe hypertension and atrial fibrillation. While clinical predictors of BTK inhibitor-related cardiotoxicity have been proposed and may aid in risk stratification, there is no routine risk model used in clinical practice today to identify patients at highest risk. A recent study investigating genetic predictors of ibrutinib-related cardiotoxicity found that single nucleotide polymorphisms in KCNQ1 and GATA4 were significantly associated with cardiotoxic events. If replicated in larger studies, these biomarkers may improve risk stratification in combination with clinical factors. A clinicogenomic risk model may aid in identifying patients at highest risk of developing BTK inhibitor-related cardiotoxicity in which further risk mitigation strategies may be explored.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"355-359"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146632/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bruton's tyrosine kinase inhibitor-related cardiotoxicity: The quest for predictive biomarkers and improved risk stratification.\",\"authors\":\"Jai N Patel, Jai Singh, Nilanjan Ghosh\",\"doi\":\"10.18632/oncotarget.28589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ibrutinib was the first Bruton's tyrosine kinase (BTK) inhibitor approved for the treatment of patients with chronic lymphocytic leukemia (CLL). While producing durable responses and prolonging survival, roughly 20-25% of patients experience dose limiting side effects, mostly consisting of cardiovascular toxicities like severe hypertension and atrial fibrillation. While clinical predictors of BTK inhibitor-related cardiotoxicity have been proposed and may aid in risk stratification, there is no routine risk model used in clinical practice today to identify patients at highest risk. A recent study investigating genetic predictors of ibrutinib-related cardiotoxicity found that single nucleotide polymorphisms in KCNQ1 and GATA4 were significantly associated with cardiotoxic events. If replicated in larger studies, these biomarkers may improve risk stratification in combination with clinical factors. A clinicogenomic risk model may aid in identifying patients at highest risk of developing BTK inhibitor-related cardiotoxicity in which further risk mitigation strategies may be explored.</p>\",\"PeriodicalId\":19499,\"journal\":{\"name\":\"Oncotarget\",\"volume\":\"15 \",\"pages\":\"355-359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncotarget\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncotarget.28589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

伊布替尼是首个获准用于治疗慢性淋巴细胞白血病(CLL)患者的布鲁顿酪氨酸激酶(BTK)抑制剂。在产生持久疗效和延长生存期的同时,约 20-25% 的患者会出现剂量限制性副作用,主要包括严重高血压和心房颤动等心血管毒性反应。虽然已经提出了 BTK 抑制剂相关心脏毒性的临床预测指标,并可帮助进行风险分层,但目前临床实践中还没有用于识别高风险患者的常规风险模型。最近一项调查伊布替尼相关心脏毒性遗传预测因子的研究发现,KCNQ1 和 GATA4 的单核苷酸多态性与心脏毒性事件显著相关。如果在更大规模的研究中得到证实,这些生物标志物与临床因素相结合可改善风险分层。临床基因组学风险模型可帮助确定发生 BTK 抑制剂相关心脏毒性风险最高的患者,从而探索进一步的风险缓解策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bruton's tyrosine kinase inhibitor-related cardiotoxicity: The quest for predictive biomarkers and improved risk stratification.

Ibrutinib was the first Bruton's tyrosine kinase (BTK) inhibitor approved for the treatment of patients with chronic lymphocytic leukemia (CLL). While producing durable responses and prolonging survival, roughly 20-25% of patients experience dose limiting side effects, mostly consisting of cardiovascular toxicities like severe hypertension and atrial fibrillation. While clinical predictors of BTK inhibitor-related cardiotoxicity have been proposed and may aid in risk stratification, there is no routine risk model used in clinical practice today to identify patients at highest risk. A recent study investigating genetic predictors of ibrutinib-related cardiotoxicity found that single nucleotide polymorphisms in KCNQ1 and GATA4 were significantly associated with cardiotoxic events. If replicated in larger studies, these biomarkers may improve risk stratification in combination with clinical factors. A clinicogenomic risk model may aid in identifying patients at highest risk of developing BTK inhibitor-related cardiotoxicity in which further risk mitigation strategies may be explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
期刊最新文献
Advancements in cell-penetrating monoclonal antibody treatment. B7-H4: A potential therapeutic target in adenoid cystic carcinoma. Computed tomography-based radiomics and body composition model for predicting hepatic decompensation. Mesenchymal stem cells - the secret agents of cancer immunotherapy: Promises, challenges, and surprising twists. Retraction: Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1