Vahid Daneshpajooh, Danish Ahmad, Jennifer Toth, Rebecca Bascom, William E Higgins
{"title":"窄带成像支气管镜的自动病灶检测。","authors":"Vahid Daneshpajooh, Danish Ahmad, Jennifer Toth, Rebecca Bascom, William E Higgins","doi":"10.1117/1.JMI.11.3.036002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Early detection of cancer is crucial for lung cancer patients, as it determines disease prognosis. Lung cancer typically starts as bronchial lesions along the airway walls. Recent research has indicated that narrow-band imaging (NBI) bronchoscopy enables more effective bronchial lesion detection than other bronchoscopic modalities. Unfortunately, NBI video can be hard to interpret because physicians currently are forced to perform a time-consuming subjective visual search to detect bronchial lesions in a long airway-exam video. As a result, NBI bronchoscopy is not regularly used in practice. To alleviate this problem, we propose an automatic two-stage real-time method for bronchial lesion detection in NBI video and perform a first-of-its-kind pilot study of the method using NBI airway exam video collected at our institution.</p><p><strong>Approach: </strong>Given a patient's NBI video, the first method stage entails a deep-learning-based object detection network coupled with a multiframe abnormality measure to locate candidate lesions on each video frame. The second method stage then draws upon a Siamese network and a Kalman filter to track candidate lesions over multiple frames to arrive at final lesion decisions.</p><p><strong>Results: </strong>Tests drawing on 23 patient NBI airway exam videos indicate that the method can process an incoming video stream at a real-time frame rate, thereby making the method viable for real-time inspection during a live bronchoscopic airway exam. Furthermore, our studies showed a 93% sensitivity and 86% specificity for lesion detection; this compares favorably to a sensitivity and specificity of 80% and 84% achieved over a series of recent pooled clinical studies using the current time-consuming subjective clinical approach.</p><p><strong>Conclusion: </strong>The method shows potential for robust lesion detection in NBI video at a real-time frame rate. Therefore, it could help enable more common use of NBI bronchoscopy for bronchial lesion detection.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138083/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic lesion detection for narrow-band imaging bronchoscopy.\",\"authors\":\"Vahid Daneshpajooh, Danish Ahmad, Jennifer Toth, Rebecca Bascom, William E Higgins\",\"doi\":\"10.1117/1.JMI.11.3.036002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Early detection of cancer is crucial for lung cancer patients, as it determines disease prognosis. Lung cancer typically starts as bronchial lesions along the airway walls. Recent research has indicated that narrow-band imaging (NBI) bronchoscopy enables more effective bronchial lesion detection than other bronchoscopic modalities. Unfortunately, NBI video can be hard to interpret because physicians currently are forced to perform a time-consuming subjective visual search to detect bronchial lesions in a long airway-exam video. As a result, NBI bronchoscopy is not regularly used in practice. To alleviate this problem, we propose an automatic two-stage real-time method for bronchial lesion detection in NBI video and perform a first-of-its-kind pilot study of the method using NBI airway exam video collected at our institution.</p><p><strong>Approach: </strong>Given a patient's NBI video, the first method stage entails a deep-learning-based object detection network coupled with a multiframe abnormality measure to locate candidate lesions on each video frame. The second method stage then draws upon a Siamese network and a Kalman filter to track candidate lesions over multiple frames to arrive at final lesion decisions.</p><p><strong>Results: </strong>Tests drawing on 23 patient NBI airway exam videos indicate that the method can process an incoming video stream at a real-time frame rate, thereby making the method viable for real-time inspection during a live bronchoscopic airway exam. Furthermore, our studies showed a 93% sensitivity and 86% specificity for lesion detection; this compares favorably to a sensitivity and specificity of 80% and 84% achieved over a series of recent pooled clinical studies using the current time-consuming subjective clinical approach.</p><p><strong>Conclusion: </strong>The method shows potential for robust lesion detection in NBI video at a real-time frame rate. Therefore, it could help enable more common use of NBI bronchoscopy for bronchial lesion detection.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.3.036002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.3.036002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Automatic lesion detection for narrow-band imaging bronchoscopy.
Purpose: Early detection of cancer is crucial for lung cancer patients, as it determines disease prognosis. Lung cancer typically starts as bronchial lesions along the airway walls. Recent research has indicated that narrow-band imaging (NBI) bronchoscopy enables more effective bronchial lesion detection than other bronchoscopic modalities. Unfortunately, NBI video can be hard to interpret because physicians currently are forced to perform a time-consuming subjective visual search to detect bronchial lesions in a long airway-exam video. As a result, NBI bronchoscopy is not regularly used in practice. To alleviate this problem, we propose an automatic two-stage real-time method for bronchial lesion detection in NBI video and perform a first-of-its-kind pilot study of the method using NBI airway exam video collected at our institution.
Approach: Given a patient's NBI video, the first method stage entails a deep-learning-based object detection network coupled with a multiframe abnormality measure to locate candidate lesions on each video frame. The second method stage then draws upon a Siamese network and a Kalman filter to track candidate lesions over multiple frames to arrive at final lesion decisions.
Results: Tests drawing on 23 patient NBI airway exam videos indicate that the method can process an incoming video stream at a real-time frame rate, thereby making the method viable for real-time inspection during a live bronchoscopic airway exam. Furthermore, our studies showed a 93% sensitivity and 86% specificity for lesion detection; this compares favorably to a sensitivity and specificity of 80% and 84% achieved over a series of recent pooled clinical studies using the current time-consuming subjective clinical approach.
Conclusion: The method shows potential for robust lesion detection in NBI video at a real-time frame rate. Therefore, it could help enable more common use of NBI bronchoscopy for bronchial lesion detection.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.